Menu Close

decompose-inside-C-x-F-1-x-1-x-n-1-




Question Number 30599 by abdo imad last updated on 23/Feb/18
decompose inside C(x)  F= (1/((x−1)(x^n  −1))) .
decomposeinsideC(x)F=1(x1)(xn1).
Commented by abdo imad last updated on 25/Feb/18
the roots of z^n  −1=0 are the complex z_k = e^(i((2kπ)/k))   with  k∈[[0,n−1]] ⇒F will be decomposed inside C(x) at  form F(x)= (a/(x−1)) +(b/((x−1)^2 )) +Σ_(k=1) ^(n−1)   (λ_k /(x−z_k )) we have  (x−1)(x^n  −1)=x^(n+1) −x −x^n  +1 ⇒  (d/dx)( (x−1)(x^n −1))=(n+1)x^n  −nx^(n−1)  −1⇒  λ_k =  (1/((n+1)z_k ^n  −n z_k ^(n−1)  −1)) =(1/(n+1−(n/z_k )−1))= (z_k /(nz_k −n))  the ch.x−1=y give F(x)= (1/((x−1)^2 (1+x +x^2  +...+x^(n−1) )))  =g(y)= (1/(y^2 (1+(1+y) +(1+y)^2  +....(1+y)^(n−1) ))) after  divide 1 per 2+y +(1+y)^2  +...(1+y)^(n−1)  folowing the  increasing powers after all calculus we find  a=((1−n)/(2n)) and b= (1/n) look also that  b=lim_(x→1) (x−1)^2 F(x)=lim_(x→1)   (1/(1+x +x^2  +...+x^(n−1) )) =(1/n)
therootsofzn1=0arethecomplexzk=ei2kπkwithk[[0,n1]]FwillbedecomposedinsideC(x)atformF(x)=ax1+b(x1)2+k=1n1λkxzkwehave(x1)(xn1)=xn+1xxn+1ddx((x1)(xn1))=(n+1)xnnxn11λk=1(n+1)zknnzkn11=1n+1nzk1=zknzknthech.x1=ygiveF(x)=1(x1)2(1+x+x2++xn1)=g(y)=1y2(1+(1+y)+(1+y)2+.(1+y)n1)afterdivide1per2+y+(1+y)2+(1+y)n1folowingtheincreasingpowersafterallcalculuswefinda=1n2nandb=1nlookalsothatb=limx1(x1)2F(x)=limx111+x+x2++xn1=1n

Leave a Reply

Your email address will not be published. Required fields are marked *