Menu Close

decompose-inside-C-x-F-x-n-x-m-1-with-m-n-2-then-find-0-x-n-x-m-1-dx-




Question Number 30580 by abdo imad last updated on 23/Feb/18
decompose inside C[x] F= (x^n /(x^m  +1)) with m≥n+2  then find ∫_0 ^∞   (x^n /(x^m  +1))dx.
decomposeinsideC[x]F=xnxm+1withmn+2thenfind0xnxm+1dx.
Commented by prof Abdo imad last updated on 24/Feb/18
z^m  +1=0⇔z^m =e^(i(2k+1)π)  so the roots of this  equation are  z_k = e^(i(2k+1)(π/(m )))   /k∈[[0,m−1]]⇒  F(x)= Σ_(k=0) ^(m−1)   (λ_k /(x−z_k ))  we have λ_k =  (z_k ^n /(m z_k ^(m−1) )) ⇒  λ_k = −(1/m) z_k ^(n+1)  ⇒F(x)= −(1/m)Σ_(k=0) ^(m−1)   (z_k ^(n+1) /(x−z_k ))  .  2) the ch. x^m =t give  ∫_0 ^∞    (x^n /(x^m +1))dx = ∫_0 ^∞     (t^(n/m) /(1+t))  (1/m)t^((1/m)−1) dt  =∫_0 ^∞    (1/m)  (t^(((n+1)/m)−1) /(1+t))dt = (1/m) (π/(sin(π((n+1)/m)))) we have  used the result ∫_0 ^∞    (t^(a−1) /(1+t))dt= (π/(sin(πa)))  if 0<a<1.
zm+1=0zm=ei(2k+1)πsotherootsofthisequationarezk=ei(2k+1)πm/k[[0,m1]]F(x)=k=0m1λkxzkwehaveλk=zknmzkm1λk=1mzkn+1F(x)=1mk=0m1zkn+1xzk.2)thech.xm=tgive0xnxm+1dx=0tnm1+t1mt1m1dt=01mtn+1m11+tdt=1mπsin(πn+1m)wehaveusedtheresult0ta11+tdt=πsin(πa)if0<a<1.

Leave a Reply

Your email address will not be published. Required fields are marked *