Menu Close

decompose-inside-C-x-the-fraction-F-x-1-x-2-1-n-with-n-integr-natural-and-n-1-




Question Number 57922 by maxmathsup by imad last updated on 14/Apr/19
decompose inside C(x) the fraction F(x) =(1/((x^2 +1)^n ))  with n integr natural  and n≥1
decomposeinsideC(x)thefractionF(x)=1(x2+1)nwithnintegrnaturalandn1
Commented by maxmathsup by imad last updated on 30/Apr/19
we have F(x) =(1/((x−i)^n (x+i)^n )) =Σ_(k=1) ^n  (a_k /((x−i)^k )) +Σ_(k=1) ^n   (b_k /((x+i)^k ))  from another side  ch. x−i =t give F(x) =G(t) =(1/(t^n (t+2i)^n ))  let determine D_(n−1) (0) for  u(t) =(1/((t+2i)^n )) ⇒u(t) =Σ_(k=0) ^(n−1)  ((u^((k)) (0))/(k!)) t^k  +(t^n /(n!))ξ(t^n )  we have u(t) =(t+2i)^(−n)  ⇒u^((1)) (t) =(−n)(t+2i)^(−n−1)  ⇒  u^((2)) (t)=(−1)^2 n(n+1) (t+2i)^(−n−2)  ⇒u^((p)) (t) =(−1)^p n(n+1)...(n+p−1)(t+2i)^(−n−p)   ⇒u^((k)) (0) =(−1)^k n(n+1)...(n+k−1)(2i)^(−n−k)  ⇒  u(t) =Σ_(k=0) ^(n−1)   (((−1)^k n(n+1)....(n+k−1))/(k!(2i)^(n+k) )) t^k  +(t^n /(n!)) ξ(t^n ) ⇒  ((u(t))/t^n ) = Σ_(k=0) ^(n−1)   (((−1)^k n(n+1)....(n+k−1))/((2i)^(n+k) k! t^(n−k) )) +(1/(n!)) ξ(1) (n−k =p)  =Σ_(p=1) ^n   (((−1)^(n−p)  n(n+1)....(n+n−p))/((n−p)! t^p (2i)^(2n−p) )) +(1/(n!))ξ(1)  =Σ_(p=1) ^n   (((−1)^(n−p) n(n+1)....(2n−p))/((n−p)! (x−i)^p (2i)^(2n−p) )) +(1/(n!))ξ(1) ⇒  a_k =(((−1)^(n−k) n(n+1)....(2n−k))/((n−k)!(2i)^(2n−k) ))    now let find b_k   we use ch .x+i =t ⇒  F(x) =H(t) =(1/(t^n (t−2i)^n ))  let determine D_(n−1) (0) for v(t) =(t−2i)^(−n)  ⇒  v(t) =Σ_(k=0) ^(n−1)    ((v^((k)) (0))/(k!)) t^k    +t^n  ξ(t^n )    but  v^((k)) (0) =(((−1)^k n(n+1)....(n+k−1))/((−2i)^(n+k) )) ⇒  ((v(t))/t^n )=Σ_(p=1) ^n   (((−1)^(n−p) n(n+1)...(2n−p))/((n−p)!t^p (−2i)^(2n−p) )) +(1/(n!))ξ(1)  ⇒  b_k =(((−1)^(n−k) n(n+1)....(2n−k))/((n−k)!(−2i)^(2n−k) )) ⇒  F(x) =Σ_(k=1) ^n   (((−1)^(n−k) n(n+1)....(2n−k))/((n−k)!(2i)^(2n−k) (x−i)^k )) +Σ_(k=1) ^n   (((−1)^(n−k) n(n+1)...(2n−k))/((n−k)!(−2i)^(2n−k) (x+i)^k ))  and we see that b_k =conj(a_k ) so we can search only a_k ...  error of typing  change ξ(t^n ) by ξ(t)...
wehaveF(x)=1(xi)n(x+i)n=k=1nak(xi)k+k=1nbk(x+i)kfromanothersidech.xi=tgiveF(x)=G(t)=1tn(t+2i)nletdetermineDn1(0)foru(t)=1(t+2i)nu(t)=k=0n1u(k)(0)k!tk+tnn!ξ(tn)wehaveu(t)=(t+2i)nu(1)(t)=(n)(t+2i)n1u(2)(t)=(1)2n(n+1)(t+2i)n2u(p)(t)=(1)pn(n+1)(n+p1)(t+2i)npu(k)(0)=(1)kn(n+1)(n+k1)(2i)nku(t)=k=0n1(1)kn(n+1).(n+k1)k!(2i)n+ktk+tnn!ξ(tn)u(t)tn=k=0n1(1)kn(n+1).(n+k1)(2i)n+kk!tnk+1n!ξ(1)(nk=p)=p=1n(1)npn(n+1).(n+np)(np)!tp(2i)2np+1n!ξ(1)=p=1n(1)npn(n+1).(2np)(np)!(xi)p(2i)2np+1n!ξ(1)ak=(1)nkn(n+1).(2nk)(nk)!(2i)2nknowletfindbkweusech.x+i=tF(x)=H(t)=1tn(t2i)nletdetermineDn1(0)forv(t)=(t2i)nv(t)=k=0n1v(k)(0)k!tk+tnξ(tn)butv(k)(0)=(1)kn(n+1).(n+k1)(2i)n+kv(t)tn=p=1n(1)npn(n+1)(2np)(np)!tp(2i)2np+1n!ξ(1)bk=(1)nkn(n+1).(2nk)(nk)!(2i)2nkF(x)=k=1n(1)nkn(n+1).(2nk)(nk)!(2i)2nk(xi)k+k=1n(1)nkn(n+1)(2nk)(nk)!(2i)2nk(x+i)kandweseethatbk=conj(ak)sowecansearchonlyakerroroftypingchangeξ(tn)byξ(t)
Commented by maxmathsup by imad last updated on 30/Apr/19
F(x) =Σ_(k=1) ^n   (((−1)^(n−k)  n(n+1)...(2n−k−1))/((2i)^   (n−k)! (x−i)^k )) +Σ_(k=1) ^n  (((−1)^(n−k) n(n+1)...(2n−k−1))/((−2i)^(2n−k) (n−k)!(x+i)^k ))
F(x)=k=1n(1)nkn(n+1)(2nk1)(2i)(nk)!(xi)k+k=1n(1)nkn(n+1)(2nk1)(2i)2nk(nk)!(x+i)k

Leave a Reply

Your email address will not be published. Required fields are marked *