Menu Close

decompose-inside-R-x-F-x-x-2n-x-2-1-n-with-n-from-N-and-n-gt-0-




Question Number 30425 by abdo imad last updated on 22/Feb/18
decompose inside R[x]   F(x)=   (x^(2n) /((x^2 +1)^n ))   with n from N and n>0.
$${decompose}\:{inside}\:{R}\left[{x}\right]\: \\ $$$${F}\left({x}\right)=\:\:\:\frac{{x}^{\mathrm{2}{n}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\:\:\:{with}\:{n}\:{from}\:{N}\:{and}\:{n}>\mathrm{0}. \\ $$
Answered by sma3l2996 last updated on 24/Feb/18
t^2 =x^2 +1  F=(((t^2 −1)^n )/t^(2n) )  F=(1−(1/t^2 ))^n =Σ_(k=0) ^n C_n ^k (−(1/t^2 ))^k   F(x)=Σ_(k=0) ^n C_n ^k (−(1/(x^2 +1)))^k
$${t}^{\mathrm{2}} ={x}^{\mathrm{2}} +\mathrm{1} \\ $$$${F}=\frac{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{{n}} }{{t}^{\mathrm{2}{n}} } \\ $$$${F}=\left(\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{n}} ^{{k}} \left(−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)^{{k}} \\ $$$${F}\left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{n}} ^{{k}} \left(−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\right)^{{k}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *