decompose-inside-R-x-p-x-x-2n-1-1-then-find-k-1-n-sin-kpi-2n-1- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 30743 by abdo imad last updated on 25/Feb/18 decomposeinsideR[x]p(x)=x2n+1−1thenfind∏k=1nsin(kπ2n+1). Commented by abdo imad last updated on 02/Mar/18 therootsofp(x)?z2n+1−1=0⇔z2n+1=ei(2kπ)sotherootsarezk=ei2kπ2n+1withk∈[[0,2n]]⇒p(x)=∏k=02n(x−zk)=(x−1)∏k=12n(x−ei2kπ2n+1)⇒p(x)x−1=∏k=12n(x−ei2kπ2n+1)⇒limx→1p(x)x−1=∏k=12n(1−ei2kπ2n+1)⇒(2n+1)=∏k=12n(1−cos(2kπ2n+1)−isin(2kπ2n+1))=∏k=12n(2sin2(kπ2n+1)−2isin(kπ2n+1)cos(kπ2n+1))=22n(−1)n∏k=12nsin(kπ2n+1)ei(kπ2n+1)=22n(−i)n(∏k=12nsin(kπ2n+1))eiπ2n+12n(2n+1)2=22n∏k=12nsin(kπ2n+1)but∏k=12nsin(kπ2n+1)=∏k=1nsin(kπ2n+1)∏k=n+12nsin(kπ2n+1)thech.k−n=jgive∏k=n+12nsin(kπ2n+1)=∏j=1nsin((n+j)π2n+1)=∏j=1nsin(π−nπ+jπ2n+1)=∏j=1nsin(2nπ+π−nπ−jπ2n+1)=∏j=1nsin((n+1−j)π2n+1)=∏k=1nsin(kπ2n+1)bych.n+1−j=k⇒2n+1=(2n)2(∏k=1nsin(kπ2n+1))2⇒∏k=1nsin(kπ2n+1)=2n+12n. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-P-x-2-x-2-x-Next Next post: Show-that-0-1-1-x-2-1-x-2-dx-pi-4-1-4-3-4-4-3-4-1-4-where-Gamma-function- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.