Menu Close

decompose-inside-R-x-p-x-x-2n-1-1-then-find-k-1-n-sin-kpi-2n-1-




Question Number 30743 by abdo imad last updated on 25/Feb/18
decompose inside R[x]  p(x)=x^(2n+1)  −1 then find  Π_(k=1) ^n  sin( ((kπ)/(2n+1))) .
decomposeinsideR[x]p(x)=x2n+11thenfindk=1nsin(kπ2n+1).
Commented by abdo imad last updated on 02/Mar/18
the roots of p(x) ?  z^(2n+1) −1=0 ⇔ z^(2n+1) =e^(i(2kπ))   so the roots are z_k = e^(i((2kπ)/(2n+1)))   with k∈ [[0,2n]] ⇒  p(x)=Π_(k=0) ^(2n)  (x−z_k )=(x−1) Π_(k=1) ^(2n) (x− e^(i((2kπ)/(2n+1))) ) ⇒  ((p(x))/(x−1)) =Π_(k=1) ^(2n)  (x−e^(i((2kπ)/(2n+1))) ) ⇒lim_(x→1)   ((p(x))/(x−1)) =Π_(k=1) ^(2n) (1−e^(i((2kπ)/(2n+1))) )  ⇒ (2n+1)=Π_(k=1) ^(2n) (1−cos(((2kπ)/(2n+1))) −isin(((2kπ)/(2n+1))))  =Π_(k=1) ^(2n)  (2sin^2 ( ((kπ)/(2n+1))) −2i sin(((kπ)/(2n+1)))cos(((kπ)/(2n+1))))  =2^(2n)  (−1)^n  Π_(k=1) ^(2n)  sin(((kπ)/(2n+1))) e^(i(((kπ)/(2n+1))))   =2^(2n) (−i)^n ( Π_(k=1) ^(2n)  sin(((kπ)/(2n+1)))) e^(i(π/(2n+1))((2n(2n+1))/2))   =2^(2n)  Π_(k=1) ^(2n)  sin(((kπ)/(2n+1))) but  Π_(k=1) ^(2n)  sin(((kπ)/(2n+1)))=Π_(k=1) ^n  sin(((kπ)/(2n+1))) Π_(k=n+1) ^(2n) sin(((kπ)/(2n+1)))the  ch.k−n=j give  Π_(k=n+1) ^(2n)  sin(((kπ)/(2n+1))) =Π_(j=1) ^n  sin( (((n+j)π)/(2n+1)))  =Π_(j=1) ^n  sin(π −((nπ +jπ)/(2n+1)))=Π_(j=1) ^n sin(((2nπ +π −nπ −jπ)/(2n+1)))  =Π_(j=1) ^n  sin ((((n+1−j)π)/(2n+1)))=Π_(k=1) ^n  sin( ((kπ)/(2n+1)) ) by ch.n+1−j=k⇒  2n+1=(2^n )^(2 )   (Π_(k=1) ^n  sin(((kπ)/(2n+1))))^2  ⇒  Π_(k=1) ^n    sin(((kπ)/(2n+1))) =((√(2n+1))/2^n ) .
therootsofp(x)?z2n+11=0z2n+1=ei(2kπ)sotherootsarezk=ei2kπ2n+1withk[[0,2n]]p(x)=k=02n(xzk)=(x1)k=12n(xei2kπ2n+1)p(x)x1=k=12n(xei2kπ2n+1)limx1p(x)x1=k=12n(1ei2kπ2n+1)(2n+1)=k=12n(1cos(2kπ2n+1)isin(2kπ2n+1))=k=12n(2sin2(kπ2n+1)2isin(kπ2n+1)cos(kπ2n+1))=22n(1)nk=12nsin(kπ2n+1)ei(kπ2n+1)=22n(i)n(k=12nsin(kπ2n+1))eiπ2n+12n(2n+1)2=22nk=12nsin(kπ2n+1)butk=12nsin(kπ2n+1)=k=1nsin(kπ2n+1)k=n+12nsin(kπ2n+1)thech.kn=jgivek=n+12nsin(kπ2n+1)=j=1nsin((n+j)π2n+1)=j=1nsin(πnπ+jπ2n+1)=j=1nsin(2nπ+πnπjπ2n+1)=j=1nsin((n+1j)π2n+1)=k=1nsin(kπ2n+1)bych.n+1j=k2n+1=(2n)2(k=1nsin(kπ2n+1))2k=1nsin(kπ2n+1)=2n+12n.

Leave a Reply

Your email address will not be published. Required fields are marked *