Menu Close

decompose-inside-R-x-the-fraction-F-x-1-x-3-n-x-1-with-n-integr-




Question Number 33843 by prof Abdo imad last updated on 25/Apr/18
decompose inside R(x) the fraction  F(x)=  (1/((x+3)^n  (x+1))) with n integr .
decomposeinsideR(x)thefractionF(x)=1(x+3)n(x+1)withnintegr.
Commented by abdo imad last updated on 28/Apr/18
let use x+3=t ⇒F(x)=g(t)= (1/(t^n (t−2))) let find D_(n−1) (0)for  g(t)= (1/(t−2)) we have g(t)=Σ_(k=0) ^(n−1)   ((g^((k)) (0))/(k!))t^k  +(t^n /(n!))ξ(t) with  ξ(t)_(t→0) →0    but  g^((k)) (t)= (((−1)^k k!)/((t−2)^(k+1) )) ⇒g^((k)) (0) =(((−1)^k k!)/((−1)^(k+1) 2^(k+1) ))  =−((k!)/2^(k+1) ) ⇒g(t)=Σ_(k=0) ^(n−1) ( −(t^k /2^(k+1) ) ) +(t^n /(n!))ξ(t)  g(t) = Σ_(k=1) ^(n−1)  (λ_k /t^k )  +(λ_n /t^n ) + (a/(t−2))  a=lim_(t→2) (g−2)g(t) =(1/2^n )  λ_n =lim_(t→0)  t^n g(t) =−(1/2) ⇒ g(t) =Σ_(k=1) ^n  (λ_k /t^k ) −(1/(2t^n )) +(1/(2^n (t−2)))  from another side g(t)=−(1/t^n )Σ_(k=0) ^(n−1)    (t^k /2^(k+1) ) +(1/(n!)) ξ(t)  =−Σ_(k=0) ^(n−1)     (1/(t^(n−k)  2^(k+1) )) +(1/(n!))ξ(t) changement of indice   n−k =p give g(t)=−Σ_(p=1) ^(n−1)    (1/(t^p  2^(n−p +1) )) +(1/(n!)) ξ(t)  =Σ_(k=1) ^(n−1)     −(1/(2^(n−k +1)  t^k )) +(1/(n!))ξ(t) ⇒λ_k =((−1)/2^(n−k+1) ) ⇒  g(t)=Σ_(k=1) ^(n−1)    ((−1)/(2^(n−k+1)  t^k )) −(1/(2t^n )) + (1/(2^n (t−2))) ⇒  F(x)=Σ_(k=1) ^(n−1)   ((−1)/(2^(n−k+1) (x+3))) −(1/(2(x+3)^n )) +(1/(2^n (x+1))) .
letusex+3=tF(x)=g(t)=1tn(t2)letfindDn1(0)forg(t)=1t2wehaveg(t)=k=0n1g(k)(0)k!tk+tnn!ξ(t)withξ(t)t00butg(k)(t)=(1)kk!(t2)k+1g(k)(0)=(1)kk!(1)k+12k+1=k!2k+1g(t)=k=0n1(tk2k+1)+tnn!ξ(t)g(t)=k=1n1λktk+λntn+at2a=limt2(g2)g(t)=12nλn=limt0tng(t)=12g(t)=k=1nλktk12tn+12n(t2)fromanothersideg(t)=1tnk=0n1tk2k+1+1n!ξ(t)=k=0n11tnk2k+1+1n!ξ(t)changementofindicenk=pgiveg(t)=p=1n11tp2np+1+1n!ξ(t)=k=1n112nk+1tk+1n!ξ(t)λk=12nk+1g(t)=k=1n112nk+1tk12tn+12n(t2)F(x)=k=1n112nk+1(x+3)12(x+3)n+12n(x+1).
Commented by abdo imad last updated on 28/Apr/18
★F(x)= Σ_(k=1) ^(n−1)   ((−1)/(2^(n−k+1) (x+3)^k )) −(1/(2(x+3)^n )) + (1/(2^n (x+1))) .★
F(x)=k=1n112nk+1(x+3)k12(x+3)n+12n(x+1).

Leave a Reply

Your email address will not be published. Required fields are marked *