Menu Close

decompose-sur-R-x-x-2n-1-1-




Question Number 30590 by abdo imad last updated on 23/Feb/18
decompose sur R[x]  x^(2n+1)  −1.
decomposesurR[x]x2n+11.
Answered by sma3l2996 last updated on 23/Feb/18
let P(x)=x^(2n+1) −1  α_k =e^((2ikπ)/(2n+1))  are roots of P(x)  P(x)=Π_(k=0) ^(2n) (x−e^((2ikπ)/(2n+1)) )  α_1 =e^((2iπ)/(2n+1))  ; α_(2n) =e^((2i(2n)π)/(2n+1)) =e^((2i(2n+1−1)π)/(2n+1)) =e^((−2iπ)/(2n+1)) ×e^(2iπ) =α_1 ^(__)   (x−α_1 )(x−α_1 ^(__) )=x^2 −2cos(((2π)/(2n+1)))+1  α_2 =α_(2n−1) ^(__)   α_(n−1) =α_(n+2) ^(__)   In general  α_j =α_(2n−(j−1)) ^(__)   and  (x−α_j )(x−α_(2n−(j−1)) )=x^2 +2cos(((2jπ)/(2n+1)))+1  so  P(x)=(x−1)Π_(k=1) ^n (x^2 +2cos(((2kπ)/(2n+1)))+1)
letP(x)=x2n+11αk=e2ikπ2n+1arerootsofP(x)P(x)=k=02n(xe2ikπ2n+1)α1=e2iπ2n+1;α2n=e2i(2n)π2n+1=e2i(2n+11)π2n+1=e2iπ2n+1×e2iπ=α__1(xα1)(xα__1)=x22cos(2π2n+1)+1α2=α__2n1αn1=α__n+2Ingeneralαj=α__2n(j1)and(xαj)(xα2n(j1))=x2+2cos(2jπ2n+1)+1soP(x)=(x1)k=1n(x2+2cos(2kπ2n+1)+1)

Leave a Reply

Your email address will not be published. Required fields are marked *