Question Number 30590 by abdo imad last updated on 23/Feb/18
$${decompose}\:{sur}\:{R}\left[{x}\right]\:\:{x}^{\mathrm{2}{n}+\mathrm{1}} \:−\mathrm{1}. \\ $$
Answered by sma3l2996 last updated on 23/Feb/18
$${let}\:{P}\left({x}\right)={x}^{\mathrm{2}{n}+\mathrm{1}} −\mathrm{1} \\ $$$$\alpha_{{k}} ={e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{2}{n}+\mathrm{1}}} \:{are}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$${P}\left({x}\right)=\prod_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \left({x}−{e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{2}{n}+\mathrm{1}}} \right) \\ $$$$\alpha_{\mathrm{1}} ={e}^{\frac{\mathrm{2}{i}\pi}{\mathrm{2}{n}+\mathrm{1}}} \:;\:\alpha_{\mathrm{2}{n}} ={e}^{\frac{\mathrm{2}{i}\left(\mathrm{2}{n}\right)\pi}{\mathrm{2}{n}+\mathrm{1}}} ={e}^{\frac{\mathrm{2}{i}\left(\mathrm{2}{n}+\mathrm{1}−\mathrm{1}\right)\pi}{\mathrm{2}{n}+\mathrm{1}}} ={e}^{\frac{−\mathrm{2}{i}\pi}{\mathrm{2}{n}+\mathrm{1}}} ×{e}^{\mathrm{2}{i}\pi} =\overset{\_\_} {\alpha}_{\mathrm{1}} \\ $$$$\left({x}−\alpha_{\mathrm{1}} \right)\left({x}−\overset{\_\_} {\alpha}_{\mathrm{1}} \right)={x}^{\mathrm{2}} −\mathrm{2}{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)+\mathrm{1} \\ $$$$\alpha_{\mathrm{2}} =\overset{\_\_} {\alpha}_{\mathrm{2}{n}−\mathrm{1}} \\ $$$$\alpha_{{n}−\mathrm{1}} =\overset{\_\_} {\alpha}_{{n}+\mathrm{2}} \\ $$$${In}\:{general}\:\:\alpha_{{j}} =\overset{\_\_} {\alpha}_{\mathrm{2}{n}−\left({j}−\mathrm{1}\right)} \\ $$$${and}\:\:\left({x}−\alpha_{{j}} \right)\left({x}−\alpha_{\mathrm{2}{n}−\left({j}−\mathrm{1}\right)} \right)={x}^{\mathrm{2}} +\mathrm{2}{cos}\left(\frac{\mathrm{2}{j}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)+\mathrm{1} \\ $$$${so}\:\:{P}\left({x}\right)=\left({x}−\mathrm{1}\right)\prod_{{k}=\mathrm{1}} ^{{n}} \left({x}^{\mathrm{2}} +\mathrm{2}{cos}\left(\frac{\mathrm{2}{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)+\mathrm{1}\right) \\ $$