Menu Close

decompose-tbe-fraction-F-x-1-x-n-x-1-with-n-integr-natural-




Question Number 57232 by maxmathsup by imad last updated on 31/Mar/19
decompose tbe fraction F(x)=(1/(x^n (x+1)))  with n integr natural.
decomposetbefractionF(x)=1xn(x+1)withnintegrnatural.
Commented by maxmathsup by imad last updated on 14/Apr/19
 the dcomposition of F is F(x) =(a/(x+1)) +Σ_(i=1) ^n  (λ_i /x^i )   let w(x) =(1/(x+1))  let find  D_(n−1) (o)(w) ⇒w(x) =Σ_(k=0) ^(n−1)  (x^k /(k!)) w^((k)) (0) +(x^n /(n!)) ξ(x)(ξ(x)→0 f x→0)  but w^((k)) (x) =(((−1)^k k!)/((x+1)^(k+1) )) ⇒w^((k)) (0) =(−1)^k  k! ⇒w(x) =Σ_(k=0) ^(n−1)  (−1)^k  x^k  +(x^n /(n!))ξ(x)  ⇒F(x) =Σ_(k=0) ^(n−1)   (((−1)^k )/x^(n−k) ) +(1/(n!))ξ(x)    changement of indice n−k =i give  F(x) =Σ_(i=1) ^n  (((−1)^(n−i) )/x^i ) +(1/(n!))ξ(x) but F(x) =(a/(x+1)) +Σ_(i=1) ^n  (λ_i /x^i ) ⇒λ_i =(−1)^(n−i)   i∈[[1,n]]    we have a =lim_(x→−1) (x+1)F(x) =(−1)^n  ⇒  F(x) =(((−1)^n )/(x+1)) +Σ_(i=1) ^n  (((−1)^(n−i) )/x^i ) .
thedcompositionofFisF(x)=ax+1+i=1nλixiletw(x)=1x+1letfindDn1(o)(w)w(x)=k=0n1xkk!w(k)(0)+xnn!ξ(x)(ξ(x)0fx0)butw(k)(x)=(1)kk!(x+1)k+1w(k)(0)=(1)kk!w(x)=k=0n1(1)kxk+xnn!ξ(x)F(x)=k=0n1(1)kxnk+1n!ξ(x)changementofindicenk=igiveF(x)=i=1n(1)nixi+1n!ξ(x)butF(x)=ax+1+i=1nλixiλi=(1)nii[[1,n]]wehavea=limx1(x+1)F(x)=(1)nF(x)=(1)nx+1+i=1n(1)nixi.

Leave a Reply

Your email address will not be published. Required fields are marked *