Question Number 57923 by maxmathsup by imad last updated on 14/Apr/19

Commented by maxmathsup by imad last updated on 28/Apr/19
![roots of z^(2n) −1 =0 let z =re^(iθ) so z^(2n) =1 ⇒r^n =1 and2 nθ =2kπ ⇒ θ_k =((kπ)/n) ⇒ the roots areZ_k =e^((ik)/n) and k∈[[0,2n−1]] ⇒ F(x) =(x^n /(Π_(k=0) ^(2n−1) (x−Z_k ))) =Σ_(k=0) ^(2n−1) (λ_k /(x−Z_k )) and λ_k =(Z_k ^n /(2n Z_k ^(2n−1) )) =(1/(2n)) Z_k ^(n+1) ⇒ F(x) =(1/(2n))Σ_(k=0) ^(2n−1) (Z_k ^(n+1) /(x−Z_k )) is the decomposition inside C(x) .](https://www.tinkutara.com/question/Q58721.png)
Commented by maxmathsup by imad last updated on 28/Apr/19
![we have Z_k =e^((ikπ)/n) with k∈[[0,2n−1]] Z_0 =1 , Z_1 =e^((iπ)/n) , Z_(2 ) = e^((i2π)/n) , Z_(n−1) =e^(i(((n−1)π)/n)) ,Z_n =−1 ,Z_(n+1) =e^(i(((n+1)π)/n)) , ....Z_(2n−1) =e^(i(((2n−1)π)/n)) ⇒Z_(2n−1) =Z_1 ^− ,Z_(2n−2) =Z_2 ^− .... ⇒ F(x) =(1/(2n)) { (1/(Z−1)) +(((−1)^(n+1) )/(x+1)) +Σ_(k=1) ^(n−1) ( (Z_k ^(n+1) /(x−Z_k )) +(((Z_k ^− )^(n+1) )/(x−Z_k ^− )))} ⇒ F(x)= (1/(2n(x−1))) +(((−1)^(n+1) )/(2n(x+1))) +(1/(2n)) +Σ_(k=0) ^(n−1) ((Z_k ^(n+1) (x−Z_k ^− )+(x−Z_k )(Z_k ^− )^(n+1) )/(x^2 −2xRe(Z_k )+1)) F(x) =(1/(2n(x−1))) +(((−1)^(n+1) )/(2n(x+1))) +Σ_(k=0) ^(n−1) (((Z_k ^(n+1) +(Z_k ^− )^(n+1) )x −Z_k ^(n+1) Z_k ^− −Z_k (Z_k ^− )^(n+1) )/(x^2 −2cos(((kπ)/n))x +1)) is the decomposition inside R(x) with Z_k ^(n+1) +(Z_k ^− )^(n+1) = 2 Re(Z_k ^(n+1) ) =2cos(k(((n+1)π)/n)) −Z_k ^(n+1) Z_k ^− −Z_k (Z_k ^− )^(n+1) =−( Z_k ^n +(Z_k ^− )^n ) =−2cos(kπ) =−2(−1)^k .](https://www.tinkutara.com/question/Q58726.png)
Commented by maxmathsup by imad last updated on 29/Apr/19
