Menu Close

decompose-the-fraction-F-x-x-n-x-2n-1-inside-C-x-and-R-x-




Question Number 57923 by maxmathsup by imad last updated on 14/Apr/19
decompose the fraction F(x) =(x^n /(x^(2n) −1)) inside C(x) and R(x)
decomposethefractionF(x)=xnx2n1insideC(x)andR(x)
Commented by maxmathsup by imad last updated on 28/Apr/19
roots of z^(2n) −1 =0      let z =re^(iθ)    so z^(2n) =1 ⇒r^n =1 and2 nθ =2kπ  ⇒  θ_k =((kπ)/n)  ⇒ the roots areZ_k =e^((ik)/n)    and k∈[[0,2n−1]]  ⇒  F(x) =(x^n /(Π_(k=0) ^(2n−1) (x−Z_k ))) =Σ_(k=0) ^(2n−1)    (λ_k /(x−Z_k ))    and  λ_k =(Z_k ^n /(2n Z_k ^(2n−1) )) =(1/(2n)) Z_k ^(n+1)  ⇒  F(x) =(1/(2n))Σ_(k=0) ^(2n−1)     (Z_k ^(n+1) /(x−Z_k ))   is the decomposition inside C(x) .
rootsofz2n1=0letz=reiθsoz2n=1rn=1and2nθ=2kπθk=kπntherootsareZk=eiknandk[[0,2n1]]F(x)=xnk=02n1(xZk)=k=02n1λkxZkandλk=Zkn2nZk2n1=12nZkn+1F(x)=12nk=02n1Zkn+1xZkisthedecompositioninsideC(x).
Commented by maxmathsup by imad last updated on 28/Apr/19
we have Z_k =e^((ikπ)/n)    with  k∈[[0,2n−1]]  Z_0 =1  ,  Z_1 =e^((iπ)/n)   , Z_(2 ) = e^((i2π)/n)   ,   Z_(n−1) =e^(i(((n−1)π)/n))   ,Z_n =−1  ,Z_(n+1)  =e^(i(((n+1)π)/n))  ,  ....Z_(2n−1) =e^(i(((2n−1)π)/n))  ⇒Z_(2n−1) =Z_1 ^−   ,Z_(2n−2) =Z_2 ^−  .... ⇒  F(x) =(1/(2n)) {  (1/(Z−1))  +(((−1)^(n+1) )/(x+1)) +Σ_(k=1) ^(n−1)    ( (Z_k ^(n+1) /(x−Z_k )) +(((Z_k ^− )^(n+1) )/(x−Z_k ^− )))} ⇒  F(x)= (1/(2n(x−1))) +(((−1)^(n+1) )/(2n(x+1))) +(1/(2n)) +Σ_(k=0) ^(n−1)   ((Z_k ^(n+1) (x−Z_k ^− )+(x−Z_k )(Z_k ^− )^(n+1) )/(x^2 −2xRe(Z_k )+1))  F(x) =(1/(2n(x−1))) +(((−1)^(n+1) )/(2n(x+1))) +Σ_(k=0) ^(n−1)    (((Z_k ^(n+1) +(Z_k ^− )^(n+1) )x −Z_k ^(n+1)  Z_k ^−  −Z_k (Z_k ^− )^(n+1) )/(x^2  −2cos(((kπ)/n))x +1)) is the decomposition inside R(x)   with  Z_k ^(n+1)  +(Z_k ^− )^(n+1)  = 2 Re(Z_k ^(n+1) ) =2cos(k(((n+1)π)/n))  −Z_k ^(n+1)  Z_k ^−  −Z_k (Z_k ^− )^(n+1)  =−( Z_k ^n  +(Z_k ^− )^n ) =−2cos(kπ) =−2(−1)^k  .
wehaveZk=eikπnwithk[[0,2n1]]Z0=1,Z1=eiπn,Z2=ei2πn,Zn1=ei(n1)πn,Zn=1,Zn+1=ei(n+1)πn,.Z2n1=ei(2n1)πnZ2n1=Z1,Z2n2=Z2.F(x)=12n{1Z1+(1)n+1x+1+k=1n1(Zkn+1xZk+(Zk)n+1xZk)}F(x)=12n(x1)+(1)n+12n(x+1)+12n+k=0n1Zkn+1(xZk)+(xZk)(Zk)n+1x22xRe(Zk)+1F(x)=12n(x1)+(1)n+12n(x+1)+k=0n1(Zkn+1+(Zk)n+1)xZkn+1ZkZk(Zk)n+1x22cos(kπn)x+1isthedecompositioninsideR(x)withZkn+1+(Zk)n+1=2Re(Zkn+1)=2cos(k(n+1)πn)Zkn+1ZkZk(Zk)n+1=(Zkn+(Zk)n)=2cos(kπ)=2(1)k.
Commented by maxmathsup by imad last updated on 29/Apr/19
F(x) =(1/(2n(x−1))) +(((−1)^(n+1) )/(2n(x+1))) +(1/n) Σ_(k=1) ^(n−1)   ((cos(k((n+1)/n)π)x −(−1)^k )/(x^2  −2cos(((kπ)/n))x +1))  .
F(x)=12n(x1)+(1)n+12n(x+1)+1nk=1n1cos(kn+1nπ)x(1)kx22cos(kπn)x+1.

Leave a Reply

Your email address will not be published. Required fields are marked *