Question Number 58769 by Mr X pcx last updated on 29/Apr/19
$${decompose}\:{the}\:{fractions}\:{inside}\:{C}\left({x}\right) \\ $$$$\left.\mathrm{1}\right)\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{5}} } \\ $$
Commented by maxmathsup by imad last updated on 01/May/19
$$\left.\mathrm{1}\right)\:{F}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }\:=\frac{\mathrm{1}}{\left({x}−{i}\right)^{\mathrm{3}} \left({x}+{i}\right)^{\mathrm{3}} }\:=\sum_{{k}=\mathrm{1}} ^{\mathrm{3}} \:\:\frac{{a}_{{k}} }{\left({x}−{i}\right)^{{k}} }\:+\sum_{{k}=\mathrm{1}} ^{\mathrm{3}} \:\frac{{b}_{{k}} }{\left({x}+{i}\right)^{\mathrm{3}} } \\ $$$$=\frac{{a}_{\mathrm{1}} }{{x}−{i}}\:+\frac{{a}_{\mathrm{1}} }{\left({x}−{i}\right)^{\mathrm{2}} }\:+\frac{{a}_{\mathrm{3}} }{\left({x}−{i}\right)^{\mathrm{3}} }\:+\frac{{b}_{\mathrm{1}} }{{x}+{i}}\:+\frac{{b}_{\mathrm{2}} }{\left({x}+{i}\right)^{\mathrm{2}} }\:+\frac{{b}_{\mathrm{3}} }{\left({x}+{i}\right)^{\mathrm{3}} } \\ $$$${we}\:{have}\:{conj}\left({F}\left({x}\right)\right)={F}\left({x}\right)\:\Rightarrow{b}_{{k}} =\overset{−} {{a}}_{{k}} \:\:\:\:{let}\:{determine}\:{a}_{{k}} \\ $$$${changement}\:{x}−{i}\:={t}\:{give}\:{F}\left({x}\right)\:={G}\left({t}\right)\:=\frac{\mathrm{1}}{{t}^{\mathrm{3}} \left({t}+\mathrm{2}{i}\right)^{\mathrm{3}} }\:\:{let}\:{find}\:{D}_{\mathrm{2}} \left(\mathrm{0}\right)\:{for} \\ $$$${w}\left({t}\right)\:=\frac{\mathrm{1}}{\left({t}+\mathrm{2}{i}\right)^{\mathrm{3}} }\:\Rightarrow\:{w}\left({t}\right)\:={w}\left(\mathrm{0}\right)\:+\frac{{t}}{\mathrm{1}!}\:{w}^{\left(\mathrm{1}\right)} \left(\mathrm{0}\right)\:+\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\:{w}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)+\frac{{t}^{\mathrm{3}} }{\mathrm{3}!}\:\xi\left({t}\right)\:{but} \\ $$$${w}\left({t}\right)\:=\left({t}+\mathrm{2}{i}\right)^{−\mathrm{3}} \:\Rightarrow\:{w}\left(\mathrm{0}\right)\:=\left(\mathrm{2}{i}\right)^{−\mathrm{3}} \\ $$$${w}^{'} \left({t}\right)\:=−\mathrm{3}\left({t}+\mathrm{2}{i}\right)^{−\mathrm{4}} \:\Rightarrow{w}^{\left(\mathrm{1}\right)} \left(\mathrm{0}\right)\:=−\mathrm{3}\left(\mathrm{2}{i}\right)^{−\mathrm{4}} \\ $$$${w}^{\left(\mathrm{2}\right)} \left({t}\right)\:=\mathrm{12}\:\left({t}+\mathrm{2}{i}\right)^{−\mathrm{5}} \:\Rightarrow{w}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)\:=\mathrm{12}\left(\mathrm{2}{i}\right)^{−\mathrm{5}} \:\Rightarrow \\ $$$${w}\left({t}\right)\:=\left(\mathrm{2}{i}\right)^{−\mathrm{3}} \:−\mathrm{3}\left(\mathrm{2}{i}\right)^{−\mathrm{4}} {t}\:\:\:+\mathrm{6}\:\left(\mathrm{2}{i}\right)^{−\mathrm{5}} {t}^{\mathrm{2}} \:+\frac{{t}^{\mathrm{3}} }{\mathrm{3}!}\xi\left({t}\right)\:\Rightarrow\frac{{w}\left({t}\right)}{{t}^{\mathrm{3}} } \\ $$$$=\frac{\left(\mathrm{2}{i}\right)^{−\mathrm{3}} }{{t}^{\mathrm{3}} }\:−\mathrm{3}\left(\mathrm{2}{i}\right)^{−\mathrm{4}} \:\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\:+\mathrm{6}\left(\mathrm{2}{i}\right)^{−\mathrm{5}} \:\frac{\mathrm{1}}{{t}}\:+\frac{\mathrm{1}}{\mathrm{3}!}\xi\left({t}\right)\:\Rightarrow \\ $$$${F}\left({x}\right)\:=\frac{\mathrm{6}\left(\mathrm{2}{i}\right)^{−\mathrm{5}} }{{x}−{i}}\:−\frac{\mathrm{3}\left(\mathrm{2}{i}\right)^{−\mathrm{4}} }{\left({x}−{i}\right)^{\mathrm{2}} }\:\:+\frac{\left(\mathrm{2}{i}\right)^{−\mathrm{3}} }{\left({x}−{i}\right)^{\mathrm{3}} }\:+\frac{\mathrm{1}}{\mathrm{3}!}\xi\left({x}−{i}\right)\:\Rightarrow \\ $$$${a}_{\mathrm{1}} =\frac{\mathrm{6}}{\left(\mathrm{2}{i}\right)^{\mathrm{5}} }\:=\frac{\mathrm{6}}{\mathrm{2}.\mathrm{16}\:{i}}\:=\frac{\mathrm{3}}{\mathrm{16}{i}}\:=\frac{−\mathrm{3}{i}}{\mathrm{16}} \\ $$$${a}_{\mathrm{2}} =\frac{−\mathrm{3}}{\left(\mathrm{2}{i}\right)^{\mathrm{4}} }\:\:=\frac{−\mathrm{3}}{\mathrm{16}}\:\:\:\:{and}\:\:{a}_{\mathrm{3}} \:=\frac{\mathrm{1}}{\left(\mathrm{2}{i}\right)^{\mathrm{3}} }\:=\frac{\mathrm{1}}{−\mathrm{8}{i}}\:=\frac{{i}}{\mathrm{8}}\:\:\:{also}\:\:{b}_{\mathrm{1}} =\frac{\mathrm{3}{i}}{\mathrm{16}} \\ $$$${b}_{\mathrm{2}} =\frac{−\mathrm{3}}{\mathrm{16}}\:\:\:\:{and}\:\:{b}_{\mathrm{3}} =−\frac{{i}}{\mathrm{8}}\:\Rightarrow \\ $$$${F}\left({x}\right)\:=\frac{−\mathrm{3}{i}}{\mathrm{16}\left({x}−{i}\right)}\:−\frac{\mathrm{3}}{\mathrm{16}\left({x}−{i}\right)^{\mathrm{2}} }\:+\frac{{i}}{\mathrm{8}\left({x}−{i}\right)^{\mathrm{3}} }\:\:+\frac{\mathrm{3}{i}}{\mathrm{16}\left({x}+{i}\right)}\:−\frac{\mathrm{3}}{\mathrm{16}\left({x}+{i}\right)^{\mathrm{2}} }\:−\frac{{i}}{\mathrm{8}\left({x}+{i}\right)^{\mathrm{3}} }\:. \\ $$$$ \\ $$