Menu Close

define-d-n-to-be-the-sum-of-the-digits-of-n-i-e-d-1000-1-d-999-27-find-d-d-d-d-d-5-10-100-




Question Number 153565 by talminator2856791 last updated on 08/Sep/21
    define d(n) to be the sum of the digits     of n.      i.e  d(1000) = 1 ,    d(999) = 27      find  d(d(d(d(d(5^(10^(100) ) )))))
defined(n)tobethesumofthedigitsofn.i.ed(1000)=1,d(999)=27findd(d(d(d(d(510100)))))
Commented by Rasheed.Sindhi last updated on 08/Sep/21
3 ∤ d(d(d(d(d(5^(10^(100) ) )))))  I-E The required number is not  multiple of 3
3d(d(d(d(d(510100)))))IETherequirednumberisnotmultipleof3
Commented by talminator2856791 last updated on 08/Sep/21
 proof?
proof?
Commented by Rasheed.Sindhi last updated on 09/Sep/21
If you sufficiently apply d to get  answer in one digit you will ultimately  get 4. If you want one digit answer  I have a solution.
Ifyousufficientlyapplydtogetanswerinonedigityouwillultimatelyget4.IfyouwantonedigitanswerIhaveasolution.
Commented by talminator2856791 last updated on 09/Sep/21
 wheres the proof?
wherestheproof?
Answered by Rasheed.Sindhi last updated on 10/Sep/21
  Relation between sum of digits and  remainder modulo 9:  5^(10^(100) ) ≡d(d(d(d(d(5^(10^(100) ) )))))(mod 9)  We can verify easily that  5^6 ≡1(mod 9)  (5^6 )^k ≡1^k (mod 9)  5^(6k) ≡1(mod 9)   { ((5^(6k) ≡1(mod 9))),((5^(6k+1) ≡5(mod 9))),((5^(6k+2) ≡7(mod 9))),((5^(6k+3) ≡8(mod 9))),((5^(6k+4) ≡4(mod 9)^★ )),((5^(6k+5) ≡2(mod 9))) :}  5^(10^(100) ) =5^(6k+ ?)    { ((10≡4(mod 6))),((10^2 ≡4(mod 6)),((...)),((10^(100) ≡4(mod 6))) :}  5^(10^(100) ) =5^(6k+ 4)   d(d(d(d(d(5^(10^(100) ) )))))≡5^(10^(100) ) (mod 9)  d(d(d(d(d(5^(10^(100) ) )))))≡5^(6k+4) (mod 9)  But we′ve determined before that         5^(6k+4) ≡4(mod 9)^★   ∴d(d(d(d(d(5^(10^(100) ) )))))≡4(mod 9)  ∴ Ultimately sum of digits will be  4 if we apply sufficiently the function  d over the number  5^(10^(100) )  .
Relationbetweensumofdigitsandremaindermodulo9:510100d(d(d(d(d(510100)))))(mod9)Wecanverifyeasilythat561(mod9)(56)k1k(mod9)56k1(mod9){56k1(mod9)56k+15(mod9)56k+27(mod9)56k+38(mod9)56k+44(mod9)56k+52(mod9)510100=56k+?{104(mod6)1024(mod6101004(mod6)510100=56k+4d(d(d(d(d(510100)))))510100(mod9)d(d(d(d(d(510100)))))56k+4(mod9)Butwevedeterminedbeforethat56k+44(mod9)d(d(d(d(d(510100)))))4(mod9)Ultimatelysumofdigitswillbe4ifweapplysufficientlythefunctiondoverthenumber510100.

Leave a Reply

Your email address will not be published. Required fields are marked *