Menu Close

Define-the-laplace-transformation-equation-and-use-the-transformation-equation-transform-dy-dx-and-d-2-y-dx-2-hence-solve-the-equation-d-2-y-dx-2-5-dy-dx-4-e-x-sin-2x-Using-the-l




Question Number 110178 by Rio Michael last updated on 27/Aug/20
Define the laplace transformation equation and  use the transformation equation transform (dy/dx) and (d^2 y/dx^2 )  hence solve the equation : (d^2 y/dx^2 ) + 5 (dy/dx) + 4 = e^(−x)  sin 2x  Using the laplace transformation equations derived above.
Definethelaplacetransformationequationandusethetransformationequationtransformdydxandd2ydx2hencesolvetheequation:d2ydx2+5dydx+4=exsin2xUsingthelaplacetransformationequationsderivedabove.
Answered by Aziztisffola last updated on 27/Aug/20
L((dy/dx))=sY(s)−y(0)  L((d^2 y/dx^2 ))=s^2 Y(s)−sy(0)−y′(0)  L(e^(−x)  sin 2x)=L(sin2x)(s+1)                               =(2/((s+1)^2 +4))  ⇒s^2 Y(s)−sy(0)−y′(0)+5(sY(s)−y(0))+(4/s)=(2/((s+1)^2 +4))  (s^2 +5)Y(s)=(2/((s+1)^2 +4))−(4/s)+(s+5)y(0)+y′(0)  Y(s)=(2/(((s+1)^2 +4)(s^2 +5)))−(4/(s(s^2 +5)))+((s+5)/(s^2 +5))y(0)+((y′(0))/(s^2 +5))  y(x)=L^(−1) (Y(s))
L(dydx)=sY(s)y(0)L(d2ydx2)=s2Y(s)sy(0)y(0)L(exsin2x)=L(sin2x)(s+1)=2(s+1)2+4s2Y(s)sy(0)y(0)+5(sY(s)y(0))+4s=2(s+1)2+4(s2+5)Y(s)=2(s+1)2+44s+(s+5)y(0)+y(0)Y(s)=2((s+1)2+4)(s2+5)4s(s2+5)+s+5s2+5y(0)+y(0)s2+5y(x)=L1(Y(s))
Commented by Rio Michael last updated on 27/Aug/20
Sir please complete the solution
Sirpleasecompletethesolution

Leave a Reply

Your email address will not be published. Required fields are marked *