Menu Close

demontrer-par-recurrence-que-pour-tout-n-gt-0-appartenent-a-l-ensemble-des-entier-naturel-3-2n-2-n-est-multiple-de-7-




Question Number 176070 by doline last updated on 11/Sep/22
demontrer par recurrence que pour tout n>0 appartenent a l ensemble des entier naturel 3^(2n−2^(n ) ) est multiple de 7
$${demontrer}\:{par}\:{recurrence}\:{que}\:{pour}\:{tout}\:{n}>\mathrm{0}\:{appartenent}\:{a}\:{l}\:{ensemble}\:{des}\:{entier}\:{naturel}\:\mathrm{3}^{\mathrm{2}{n}−\mathrm{2}^{{n}\:} } {est}\:{multiple}\:{de}\:\mathrm{7} \\ $$
Commented by som(math1967) last updated on 11/Sep/22
3^(2n) −2^n   p(1)=3^2 −2^1 =7  let true for p(m)   ∴3^(2m) −2^m =7k   3^(2m) =7k+2^m   p(m+1)=3^(2m+2) −2^(m+1)   =3^(2m) ×9−2^(m+1)   =(7k+2^m )×9−2^(m+1)   =63k +2^m ×9−2^(m+1)   =63k +2^m (9−2)  =7(9k+2^m )  ∴ true for p(m+1)  ∴ 3^(2n) −2^n   multiple de 7  n∈N
$$\mathrm{3}^{\mathrm{2}{n}} −\mathrm{2}^{{n}} \\ $$$${p}\left(\mathrm{1}\right)=\mathrm{3}^{\mathrm{2}} −\mathrm{2}^{\mathrm{1}} =\mathrm{7} \\ $$$${let}\:{true}\:{for}\:{p}\left({m}\right) \\ $$$$\:\therefore\mathrm{3}^{\mathrm{2}{m}} −\mathrm{2}^{{m}} =\mathrm{7}{k} \\ $$$$\:\mathrm{3}^{\mathrm{2}{m}} =\mathrm{7}{k}+\mathrm{2}^{{m}} \\ $$$${p}\left({m}+\mathrm{1}\right)=\mathrm{3}^{\mathrm{2}{m}+\mathrm{2}} −\mathrm{2}^{{m}+\mathrm{1}} \\ $$$$=\mathrm{3}^{\mathrm{2}{m}} ×\mathrm{9}−\mathrm{2}^{{m}+\mathrm{1}} \\ $$$$=\left(\mathrm{7}{k}+\mathrm{2}^{{m}} \right)×\mathrm{9}−\mathrm{2}^{{m}+\mathrm{1}} \\ $$$$=\mathrm{63}{k}\:+\mathrm{2}^{{m}} ×\mathrm{9}−\mathrm{2}^{{m}+\mathrm{1}} \\ $$$$=\mathrm{63}{k}\:+\mathrm{2}^{{m}} \left(\mathrm{9}−\mathrm{2}\right) \\ $$$$=\mathrm{7}\left(\mathrm{9}{k}+\mathrm{2}^{{m}} \right) \\ $$$$\therefore\:{true}\:{for}\:{p}\left({m}+\mathrm{1}\right) \\ $$$$\therefore\:\mathrm{3}^{\mathrm{2}{n}} −\mathrm{2}^{{n}} \:\:{multiple}\:{de}\:\mathrm{7}\:\:{n}\in{N} \\ $$
Commented by som(math1967) last updated on 11/Sep/22
 3^(2n−2^n )  or 3^(2n) −2^n   ?
$$\:\mathrm{3}^{\mathrm{2}{n}−\mathrm{2}^{{n}} } \:{or}\:\mathrm{3}^{\mathrm{2}{n}} −\mathrm{2}^{{n}} \:\:? \\ $$
Commented by doline last updated on 11/Sep/22
multiple de 7
$${multiple}\:{de}\:\mathrm{7} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *