Menu Close

Demostration-of-the-volume-of-an-sphere-V-4pir-3-3-x-2-y-2-z-2-r-2-We-divide-the-sphere-in-8-parts-So-the-volume-of-a-part-is-0-r-0-r-2-x-2-r-2-x-2-y-2-y-x-Lets-as




Question Number 20939 by Hitler last updated on 08/Sep/17
Demostration of the volume of an sphere V=((4πr^3 )/3)  x^2 +y^2 +z^2 =r^2  We divide the sphere in 8 parts. So the volume of a part is  ∫_0 ^( r) ∫_0 ^( (√(r^2 −x^2 ))) (√(r^2 −x^2 −y^2 ))∂y∂x  Lets asumme a^2 =r^2 −x^2   ∫_0 ^( r) ∫_0 ^( a) (√(a^2 −y^2 ))∂y∂x  ∫_0 ^( r) a∫_0 ^( a) (√(1−((y/a))^2 ))∂y∂x Lets assume (y/a)=sinθ⇒(∂y/a)=cosθ∂θ  ∫(√(1−sin^2 θ))acosθ∂θ  ∫acos^2 θ∂θ  a((θ/2)−((sin2θ)/4))  a(((arcsin((y/a)))/2)−((y(√(a^2 −y^2 )))/(2a^2 )))  ∫_0 ^( r) a^2 (((arcsin((y/a)))/2)−((y(√(a^2 −y^2 )))/(2a^2 )))∣_0 ^a ∂x  ∫_0 ^( r) (((a^2 arcsin((y/a))−y(√(a^2 −y^2 )))/2))∣_0 ^a ∂x  ∫_0 ^( r) ((πa^2 )/4)∂x  ∫_0 ^( r) ((π(r^2 −x^2 ))/4)∂x  (((6πr^2 x−2πx^3 )/(24)))∣_0 ^r   ((πr^3 )/6)=1/8Volume of the sphrere so...  V=((4πr^3 )/3)
DemostrationofthevolumeofansphereV=4πr33x2+y2+z2=r2Wedividethespherein8parts.Sothevolumeofapartis0r0r2x2r2x2y2yxLetsasummea2=r2x20r0aa2y2yx0ra0a1(ya)2yxLetsassumeya=sinθya=cosθθ1sin2θacosθθacos2θθa(θ2sin2θ4)a(arcsin(ya)2ya2y22a2)0ra2(arcsin(ya)2ya2y22a2)0ax0r(a2arcsin(ya)ya2y22)0ax0rπa24x0rπ(r2x2)4x(6πr2x2πx324)0rπr36=1/8VolumeofthesphreresoV=4πr33

Leave a Reply

Your email address will not be published. Required fields are marked *