Menu Close

derivate-of-csc-2x-by-definition-




Question Number 192867 by beto last updated on 30/May/23
derivate of  csc(2x) by  definition
derivateofcsc(2x)bydefinition
Answered by cortano12 last updated on 02/Jun/23
 ((d((1/(sin 2x))))/dx)=lim_(h→0)  (((1/(sin (2x+2h)))−(1/(sin 2x)))/h)   = lim_(h→0)  ((sin 2x−sin (2x+2h))/(h sin 2x sin (2x+2h)))   =(1/(sin^2  2x)) lim_(h→0)  ((2cos (2x+h) sin (−h))/h)   = ((−2cos 2x)/(sin^2 2x)) = −2cot 2x csc 2x
d(1sin2x)dx=limh01sin(2x+2h)1sin2xh=limh0sin2xsin(2x+2h)hsin2xsin(2x+2h)=1sin22xlimh02cos(2x+h)sin(h)h=2cos2xsin22x=2cot2xcsc2x
Commented by Subhi last updated on 30/May/23
it must be −2cot(2x).csc(2x)  As  sin(2x)−sin(2x+2h)= −2cos(2x+h)sin(h)
itmustbe2cot(2x).csc(2x)Assin(2x)sin(2x+2h)=2cos(2x+h)sin(h)

Leave a Reply

Your email address will not be published. Required fields are marked *