Menu Close

Derive-Leibniz-s-formula-fg-n-x-0-k-0-n-C-n-k-f-k-x-0-g-n-k-x-0-




Question Number 108349 by Ar Brandon last updated on 16/Aug/20
Derive Leibniz′s formula :  (fg)^((n)) (x_0 )=Σ_(k=0) ^n C_n ^k f^((k)) (x_0 )g^((n−k)) (x_0 )
$$\mathrm{Derive}\:\mathrm{Leibniz}'\mathrm{s}\:\mathrm{formula}\:: \\ $$$$\left(\mathrm{fg}\right)^{\left(\mathrm{n}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \mathrm{f}^{\left(\mathrm{k}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)\mathrm{g}^{\left(\mathrm{n}−\mathrm{k}\right)} \left(\mathrm{x}_{\mathrm{0}} \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *