Question Number 183263 by Engr_Jidda last updated on 24/Dec/22
$${Derive}\:{the}\:{formular}\:{that}\:{can}\:{be}\:{used}\: \\ $$$${to}\:{count}\:{the}\:{number}\:{of}\:{dissimilar}\:{surds} \\ $$$${obtaining}\:{after}\:{full}\:{expansion}\:{of} \\ $$$$\left(\sum_{{x}=\mathrm{1}} ^{{n}} \sqrt{{x}}\right)^{\mathrm{4}} \:{where}\:{every}\:{x}\:{term}\:{is}\:{a}\:{prime}\:{number}. \\ $$
Commented by mr W last updated on 25/Dec/22
$${do}\:{you}\:{mean}\:\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\sqrt{{x}_{{i}} }\right)^{\mathrm{4}} \:{with}\:{x}_{{i}} ={primes}? \\ $$
Commented by Engr_Jidda last updated on 27/Dec/22
$${yes}\:{sir} \\ $$