Menu Close

Derive-the-formular-that-can-be-used-to-count-the-number-of-dissimilar-surds-obtaining-after-full-expansion-of-x-1-n-x-4-where-every-x-term-is-a-prime-number-




Question Number 183263 by Engr_Jidda last updated on 24/Dec/22
Derive the formular that can be used   to count the number of dissimilar surds  obtaining after full expansion of  (Σ_(x=1) ^n (√x))^4  where every x term is a prime number.
$${Derive}\:{the}\:{formular}\:{that}\:{can}\:{be}\:{used}\: \\ $$$${to}\:{count}\:{the}\:{number}\:{of}\:{dissimilar}\:{surds} \\ $$$${obtaining}\:{after}\:{full}\:{expansion}\:{of} \\ $$$$\left(\sum_{{x}=\mathrm{1}} ^{{n}} \sqrt{{x}}\right)^{\mathrm{4}} \:{where}\:{every}\:{x}\:{term}\:{is}\:{a}\:{prime}\:{number}. \\ $$
Commented by mr W last updated on 25/Dec/22
do you mean (Σ_(i=1) ^n (√x_i ))^4  with x_i =primes?
$${do}\:{you}\:{mean}\:\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\sqrt{{x}_{{i}} }\right)^{\mathrm{4}} \:{with}\:{x}_{{i}} ={primes}? \\ $$
Commented by Engr_Jidda last updated on 27/Dec/22
yes sir
$${yes}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *