Menu Close

Dertermine-all-pairs-x-y-of-integers-such-that-2010x-xy-2012y-1-0-




Question Number 159863 by HongKing last updated on 21/Nov/21
Dertermine all pairs (x;y) of integers  such that  2010x - xy + 2012y + 1 = 0
$$\mathrm{Dertermine}\:\mathrm{all}\:\mathrm{pairs}\:\left(\boldsymbol{\mathrm{x}};\boldsymbol{\mathrm{y}}\right)\:\mathrm{of}\:\mathrm{integers} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{2010x}\:-\:\mathrm{xy}\:+\:\mathrm{2012y}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$
Answered by mr W last updated on 21/Nov/21
(x−2012)y=1+2010x  y=((1+2010×2012+2010(x−2012))/(x−2012))  y=2010+((2011^2 )/(x−2012))  x−2012=±1  ⇒x=2011, 2013   ⇒y=−4042111, 4046131  x−2012=±2011  ⇒x=1, 4023  ⇒y=−1, 4021  x−2012=±4044121  ⇒x=−4042109,4046133  ⇒y=2009, 2011  all pairs (x, y):  (2011, −4042111)  (2013, 4046131)  (1, −1)  (4023, 4021)  (−4042109, 2009)  (4046133, 2011)
$$\left({x}−\mathrm{2012}\right){y}=\mathrm{1}+\mathrm{2010}{x} \\ $$$${y}=\frac{\mathrm{1}+\mathrm{2010}×\mathrm{2012}+\mathrm{2010}\left({x}−\mathrm{2012}\right)}{{x}−\mathrm{2012}} \\ $$$${y}=\mathrm{2010}+\frac{\mathrm{2011}^{\mathrm{2}} }{{x}−\mathrm{2012}} \\ $$$${x}−\mathrm{2012}=\pm\mathrm{1} \\ $$$$\Rightarrow{x}=\mathrm{2011},\:\mathrm{2013}\: \\ $$$$\Rightarrow{y}=−\mathrm{4042111},\:\mathrm{4046131} \\ $$$${x}−\mathrm{2012}=\pm\mathrm{2011} \\ $$$$\Rightarrow{x}=\mathrm{1},\:\mathrm{4023} \\ $$$$\Rightarrow{y}=−\mathrm{1},\:\mathrm{4021} \\ $$$${x}−\mathrm{2012}=\pm\mathrm{4044121} \\ $$$$\Rightarrow{x}=−\mathrm{4042109},\mathrm{4046133} \\ $$$$\Rightarrow{y}=\mathrm{2009},\:\mathrm{2011} \\ $$$${all}\:{pairs}\:\left({x},\:{y}\right): \\ $$$$\left(\mathrm{2011},\:−\mathrm{4042111}\right) \\ $$$$\left(\mathrm{2013},\:\mathrm{4046131}\right) \\ $$$$\left(\mathrm{1},\:−\mathrm{1}\right) \\ $$$$\left(\mathrm{4023},\:\mathrm{4021}\right) \\ $$$$\left(−\mathrm{4042109},\:\mathrm{2009}\right) \\ $$$$\left(\mathrm{4046133},\:\mathrm{2011}\right) \\ $$
Commented by Rasheed.Sindhi last updated on 22/Nov/21
e^x cellent sir!
$$\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \mathrm{cellent}\:\mathrm{sir}! \\ $$
Commented by HongKing last updated on 22/Nov/21
thank you so much my dear Ser cool
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Ser}\:\mathrm{cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *