Menu Close

determinant-determinant-2-424-44244-4442444-n-terms-




Question Number 175548 by Rasheed.Sindhi last updated on 02/Sep/22
                                                                                                  determinant (((  determinant (((2+424+44244+4442444+∙∙∙n terms=?_ ^ _() ^() )))_ ^ ^(∣•∣_(−) ^(−) ) )))
2+424+44244+4442444+nterms=?
Commented by infinityaction last updated on 02/Sep/22
(2+2)+(424+20)+(44244+200)+...n term  −(2+20+200+...+n term)     S  =  { 4+444+44444+...n term             −2(1+10+100+..n term)}      4+444+44444+.....n term_(Ψ)  − (2/9)(10^n −1)    Ψ = 4(1+111+11111+...n term)      9Ψ = 4(9+999 +... n term)    Ψ = (4/9)[{10−1}+{10^3 −1}+...n term]       Ψ =(4/9)[((10)/(99))×(10^(2n) −1)−n]       S   =  Ψ−(2/9)(10^n −1)      S = (4/9)[((10)/(99))×(10^(2n) −1)−n]−(2/9)(10^n −1)
(2+2)+(424+20)+(44244+200)+nterm(2+20+200++nterm)S={4+444+44444+nterm2(1+10+100+..nterm)}4+444+44444+..ntermΨ29(10n1)Ψ=4(1+111+11111+nterm)9Ψ=4(9+999+nterm)Ψ=49[{101}+{1031}+nterm]Ψ=49[1099×(102n1)n]S=Ψ29(10n1)S=49[1099×(102n1)n]29(10n1)
Commented by Rasheed.Sindhi last updated on 03/Sep/22
•∩i⊂∈!          •Thank you sir!
i⊂∈!Thankyousir!
Commented by infinityaction last updated on 03/Sep/22
��������
Commented by peter frank last updated on 05/Sep/22
thanks
thanks
Answered by Rasheed.Sindhi last updated on 04/Sep/22
AnOther way...  2+424+44244+4442444+∙∙∙n terms  =(404+44044+4440444+..._(n−1 terms)  )+(2+20+200+..._(n terms) )  =(4/9)(909+99099+9990999..._(n−1 terms) )+((2(10^n −1))/((10−1)))  =(4/9)(1000−91+100000−901+10000000−9001..._(n−1 terms) )+((2(10^n −1))/9)  =(4/9)(10^3 −91+10^5 −901+10^7 −9001..._(n−1 terms) )+((2(10^n −1))/((10−1)))  =(4/9){(10^3 +10^5 +10^7 +..._(n−1 terms)  )−(90+900+9000+..._(n−1 terms)  )−(n−1)}+((2(10^n −1))/((10−1)))  =(4/9){((10^3 (100^(n−1) −1))/(100−1))−((90(10^(n−1) −1))/(10−1))−n+1}+((2(10^n −1))/((10−1)))  =(4/9){((10^3 (100^(n−1) −1))/(99))−((90(10^(n−1) −1))/9)−n+1}+((2(10^n −1))/9)  =(4/9){((10^3 (100^(n−1) −1)−990(10^(n−1) −1)−99n+99)/(99))}+((2(10^n −1))/9)  =(4/9){((10^(2n+1) −990∙10^(n−1) −99n+89)/(99))}+((2(10^n −1))/9)  =(4/9){((10∙10^(2n) −10−99∙10^n −99n+99)/(99))}+((2(10^n −1))/9)  =(4/9){((10)/(99))(10^(2n) −1)−n}−(2/9)((10^n −1))
AnOtherway2+424+44244+4442444+nterms=(404+44044+4440444+n1terms)+(2+20+200+nterms)=49(909+99099+9990999n1terms)+2(10n1)(101)=49(100091+100000901+100000009001n1terms)+2(10n1)9=49(10391+105901+1079001n1terms)+2(10n1)(101)=49{(103+105+107+n1terms)(90+900+9000+n1terms)(n1)}+2(10n1)(101)=49{103(100n11)100190(10n11)101n+1}+2(10n1)(101)=49{103(100n11)9990(10n11)9n+1}+2(10n1)9=49{103(100n11)990(10n11)99n+9999}+2(10n1)9=49{102n+199010n199n+8999}+2(10n1)9=49{10102n109910n99n+9999}+2(10n1)9=49{1099(102n1)n}29((10n1))
Commented by Tawa11 last updated on 15/Sep/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *