Menu Close

Determinate-lim-n-k-1-n-1-k-1-k-




Question Number 172309 by mathocean1 last updated on 25/Jun/22
Determinate   lim_(n→+∞) (Σ_(k=1) ^n (((−1)^(k+1) )/k))
Determinatelimn+(k=1n(1)k+1k)
Commented by mr W last updated on 25/Jun/22
ln (1+x)=Σ_(k=1) ^∞ (((−1)^(k+1) x^k )/k)  with x=1:  ln 2=Σ_(k=1) ^∞ (((−1)^(k+1) )/k)
ln(1+x)=k=1(1)k+1xkkwithx=1:ln2=k=1(1)k+1k
Answered by Mathspace last updated on 25/Jun/22
u_n =Σ_(k=1) ^n (((−1)^(k−1) )/k)  and p(x)=Σ_(k=1) ^n (((−1)^(k−1) )/k)x^k   p^′ (x)=Σ_(k=1) ^n (−1)^(k−1) x^(k−1)   =Σ_(k=1) ^n (−x)^(k−1) =Σ_(k=0) ^(n−1) (−x)^k   =((1−(−x)^n )/(1+x)) ⇒  p(x)=∫_0 ^x ((1−(−t)^n )/(1+t)) +c  c=p(0)=0 ⇒  p(x)=∫_0 ^x ((1−(−t)^n )/(1+t))dt  ⇒p(1)=∫_0 ^1 (dt/(1+t)) −(−1)^n ∫_0 ^1 (t^n /(1+t))dt  lim_(n→+∞) u_n =lim_(n→+∞) p(1)  =ln2−lim_(n→+∞) (−1)^n ∫_0 ^1 (t^n /(1+t))dt  =ln2−0 =ln2
un=k=1n(1)k1kandp(x)=k=1n(1)k1kxkp(x)=k=1n(1)k1xk1=k=1n(x)k1=k=0n1(x)k=1(x)n1+xp(x)=0x1(t)n1+t+cc=p(0)=0p(x)=0x1(t)n1+tdtp(1)=01dt1+t(1)n01tn1+tdtlimn+un=limn+p(1)=ln2limn+(1)n01tn1+tdt=ln20=ln2

Leave a Reply

Your email address will not be published. Required fields are marked *