Menu Close

Determine-a-b-c-in-terms-of-ab-c-bc-a-ca-b-




Question Number 59581 by Rasheed.Sindhi last updated on 12/May/19
Determine a , b , c in terms of α , β , γ.                 ab+c=γ                  bc+a=α                  ca+b=β
Determinea,b,cintermsofα,β,γ.ab+c=γbc+a=αca+b=β
Answered by mr W last updated on 13/May/19
if α=β=γ=0, ⇒a=b=c=0 or −1  if α=β=γ=2, ⇒a=b=c=1 or −2  if α=β=γ=k, ⇒a=b=c=((−1±(√(1+4k)))/2)  otherwise:  a^2 b+ac=aγ  −(iii):  (a^2 −1)b=aγ−β  ⇒b=((aγ−β)/(a^2 −1))  a^2 c+ab=aβ  −(i):  (a^2 −1)c=aβ−γ  c=((aβ−γ)/(a^2 −1))  put into (ii):  (((aβ−γ)(aγ−β))/((a^2 −1)^2 ))+a=α  βγa^2 −(β^2 +γ^2 )a+βγ+a^5 −2a^3 +a−αa^4 +2αa^2 −α=0  ⇒a^5 −αa^4 −2a^3 +(2α+βγ)a^2 −(1+β^2 +γ^2 )a−(α−βγ)=0  ......?
ifα=β=γ=0,a=b=c=0or1ifα=β=γ=2,a=b=c=1or2ifα=β=γ=k,a=b=c=1±1+4k2otherwise:a2b+ac=aγ(iii):(a21)b=aγβb=aγβa21a2c+ab=aβ(i):(a21)c=aβγc=aβγa21putinto(ii):(aβγ)(aγβ)(a21)2+a=αβγa2(β2+γ2)a+βγ+a52a3+aαa4+2αa2α=0a5αa42a3+(2α+βγ)a2(1+β2+γ2)a(αβγ)=0?
Answered by ajfour last updated on 12/May/19
c=γ−ab  b(γ−ab)+a=α  a(γ−ab)+b=β  a+b=((α+β)/(1+γ−ab))  a−b=((α−β)/(1−γ+ab))  (a+b)^2 −(a−b)^2 =4ab  ⇒  (((α+β)^2 )/((1+γ−ab)^2 ))+(((α−β)^2 )/((1−γ+ab)^2 ))=4ab  let  ab=x , α+β=s , α−β=d  s^2 (1−γ+x)^2 +d^2 (1+γ−x)^2 =4x(1+γ−x)^2 (1−γ+x)^2   quintic  , ab=x  Now   2a=(s/(1+γ−x))+(d/(1−γ+x))                 2b=(s/(1+γ−x))−(d/(1−γ+x))   .                  c=γ−x .
c=γabb(γab)+a=αa(γab)+b=βa+b=α+β1+γabab=αβ1γ+ab(a+b)2(ab)2=4ab(α+β)2(1+γab)2+(αβ)2(1γ+ab)2=4abletab=x,α+β=s,αβ=ds2(1γ+x)2+d2(1+γx)2=4x(1+γx)2(1γ+x)2quintic,ab=xNow2a=s1+γx+d1γ+x2b=s1+γxd1γ+x.c=γx.

Leave a Reply

Your email address will not be published. Required fields are marked *