Menu Close

Determine-all-function-f-R-0-1-R-satisfying-the-functional-relation-f-x-f-1-1-x-2-1-2x-x-1-x-for-x-0-and-x-1-




Question Number 118150 by bobhans last updated on 15/Oct/20
Determine all function f:R╲{0,1} →R  satisfying the functional relation  f(x)+f((1/(1−x))) = ((2(1−2x))/(x(1−x))); for x≠0 and x≠1
Determineallfunctionf:R{0,1}Rsatisfyingthefunctionalrelationf(x)+f(11x)=2(12x)x(1x);forx0andx1
Commented by bemath last updated on 15/Oct/20
good question
goodquestion
Answered by bemath last updated on 15/Oct/20
letting w = (1/(1−x)), the given functional  equation can be written as   f(x)+f(w) = 2((1/x)−w)...(i)  If we setting z=(1/(1−w)) then x=(1/(1−z))  Hence we also have the relation  f(w)+f(z) = 2((1/w)−z)...(ii)  and f(z)+f(x)=2((1/z)−x)...(iii)  adding (i)and (iii) we get  2{f(x)+f(w)+f(z)}=2((1/x)−x)−2w+(2/x)  using (ii) relation, this reduces  to⇒ 2f(x)=2((1/x)−x)−2(w+(1/w))+2(z+(1/z))  now using w+(1/w)=(1/(1−x))+1−x  z+(1/z)=((x−1)/x)+(x/(x−1))  thus we get f(x) = ((x+1)/(x−1))
lettingw=11x,thegivenfunctionalequationcanbewrittenasf(x)+f(w)=2(1xw)(i)Ifwesettingz=11wthenx=11zHencewealsohavetherelationf(w)+f(z)=2(1wz)(ii)andf(z)+f(x)=2(1zx)(iii)adding(i)and(iii)weget2{f(x)+f(w)+f(z)}=2(1xx)2w+2xusing(ii)relation,thisreducesto2f(x)=2(1xx)2(w+1w)+2(z+1z)nowusingw+1w=11x+1xz+1z=x1x+xx1thuswegetf(x)=x+1x1
Answered by bobhans last updated on 15/Oct/20
(1)replacing (1/(1−x)) by x , gives   f(((x−1)/x))+f(x) = ((2(1−2(((x−1)/x))))/((((x−1)/x))(1−(((x−1)/x)))))  f(((x−1)/x))+f(x)=((2x(2−x))/((x−1)))  (2)replacing x by (1/(1−x))  f((1/(1−x)))+f((1/(1−((1/(1−x))))))=((2(1−2((1/(1−x)))))/(((1/(1−x)))(1−((1/(1−x))))))  f((1/(1−x)))+f(((x−1)/x))=((2(1−x)(1+x))/x)  now we have   (1)f(x)+f((1/(1−x))) = ((2−4x)/(x−x^2 ))  (2)f(((x−1)/x))+f(x)=((4x−2x^2 )/(x−1))  (3)f((1/(1−x)))+f(((x−1)/x))=((2−2x^2 )/x)  adding(1),(2)and(3) we get   2[ f(x)+f((1/(1−x)))+f(((x−1)/x)) ]= ((−4x^3 +6x^2 +6x−4)/(x^2 −x))  or f(x)+f((1/(1−x)))+f(((x−1)/x))=((−2x^3 +3x^2 +3x−2)/(x^2 −x))  substitute third equation , gives  f(x) = ((−2x^3 +3x^2 +3x−2)/(x^2 −x))−((2−2x^2 )/x)  f(x)= ((−2x^3 +3x^2 +3x−2−(2x−2−2x^3 +2x^2 ))/(x^2 −x))  f(x) = ((x^2 +x)/(x^2 −x)) = ((x+1)/(x−1)).
(1)replacing11xbyx,givesf(x1x)+f(x)=2(12(x1x))(x1x)(1(x1x))f(x1x)+f(x)=2x(2x)(x1)(2)replacingxby11xf(11x)+f(11(11x))=2(12(11x))(11x)(1(11x))f(11x)+f(x1x)=2(1x)(1+x)xnowwehave(1)f(x)+f(11x)=24xxx2(2)f(x1x)+f(x)=4x2x2x1(3)f(11x)+f(x1x)=22x2xadding(1),(2)and(3)weget2[f(x)+f(11x)+f(x1x)]=4x3+6x2+6x4x2xorf(x)+f(11x)+f(x1x)=2x3+3x2+3x2x2xsubstitutethirdequation,givesf(x)=2x3+3x2+3x2x2x22x2xf(x)=2x3+3x2+3x2(2x22x3+2x2)x2xf(x)=x2+xx2x=x+1x1.
Commented by bemath last updated on 15/Oct/20
waw....great...
waw.great

Leave a Reply

Your email address will not be published. Required fields are marked *