Menu Close

Determine-all-function-f-R-R-which-satisfy-f-a-x-f-a-x-4ax-for-all-real-a-and-x-




Question Number 120300 by bemath last updated on 30/Oct/20
Determine all function f:R→R  which satisfy f(a+x)−f(a−x)=4ax  for all real a and x.
$${Determine}\:{all}\:{function}\:{f}:{R}\rightarrow{R} \\ $$$${which}\:{satisfy}\:{f}\left({a}+{x}\right)−{f}\left({a}−{x}\right)=\mathrm{4}{ax} \\ $$$${for}\:{all}\:{real}\:{a}\:{and}\:{x}. \\ $$
Commented by benjo_mathlover last updated on 30/Oct/20
let f(x)=px^2 +qx+r  f(a+x)=p(a^2 +2ax+x^2 )+qx+aq+r  f(a+x)=px^2 +(2ap+q)x+a^2 p+aq+r    f(a−x)=p(a^2 −2ax+x^2 )+aq−qx+r  f(a−x)=px^2 −(2ap+q)x+a^2 p+aq+r    f(a+x)−f(a−x)=(4ap+2q)x ≡ 4ax  → 4ap+2q = 4a ; 4ap−4a=−2q  4a(1−p)= 2q ⇒ 1−p=(q/(2a))  ⇒p=1−(q/(2a)) = ((2a−q)/(2a))  f(x)= (((2a−q)/(2a)))x^2 +qx+r
$${let}\:{f}\left({x}\right)={px}^{\mathrm{2}} +{qx}+{r} \\ $$$${f}\left({a}+{x}\right)={p}\left({a}^{\mathrm{2}} +\mathrm{2}{ax}+{x}^{\mathrm{2}} \right)+{qx}+{aq}+{r} \\ $$$${f}\left({a}+{x}\right)={px}^{\mathrm{2}} +\left(\mathrm{2}{ap}+{q}\right){x}+{a}^{\mathrm{2}} {p}+{aq}+{r} \\ $$$$ \\ $$$${f}\left({a}−{x}\right)={p}\left({a}^{\mathrm{2}} −\mathrm{2}{ax}+{x}^{\mathrm{2}} \right)+{aq}−{qx}+{r} \\ $$$${f}\left({a}−{x}\right)={px}^{\mathrm{2}} −\left(\mathrm{2}{ap}+{q}\right){x}+{a}^{\mathrm{2}} {p}+{aq}+{r} \\ $$$$ \\ $$$${f}\left({a}+{x}\right)−{f}\left({a}−{x}\right)=\left(\mathrm{4}{ap}+\mathrm{2}{q}\right){x}\:\equiv\:\mathrm{4}{ax} \\ $$$$\rightarrow\:\mathrm{4}{ap}+\mathrm{2}{q}\:=\:\mathrm{4}{a}\:;\:\mathrm{4}{ap}−\mathrm{4}{a}=−\mathrm{2}{q} \\ $$$$\mathrm{4}{a}\left(\mathrm{1}−{p}\right)=\:\mathrm{2}{q}\:\Rightarrow\:\mathrm{1}−{p}=\frac{{q}}{\mathrm{2}{a}} \\ $$$$\Rightarrow{p}=\mathrm{1}−\frac{{q}}{\mathrm{2}{a}}\:=\:\frac{\mathrm{2}{a}−{q}}{\mathrm{2}{a}} \\ $$$${f}\left({x}\right)=\:\left(\frac{\mathrm{2}{a}−{q}}{\mathrm{2}{a}}\right){x}^{\mathrm{2}} +{qx}+{r}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *