Menu Close

Determine-all-functions-f-0-1-such-that-x-0-1-f-x-f-x-f-0-f-1-




Question Number 88003 by Ar Brandon last updated on 07/Apr/20
Determine all functions f[0,1]→Ω  such that ∀x∈[0,1] f ′(x)+f(x)=f(0)+f(1)
$${Determine}\:{all}\:{functions}\:{f}\left[\mathrm{0},\mathrm{1}\right]\rightarrow\Omega \\ $$$${such}\:{that}\:\forall{x}\in\left[\mathrm{0},\mathrm{1}\right]\:{f}\:'\left({x}\right)+{f}\left({x}\right)={f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right) \\ $$
Commented by mr W last updated on 07/Apr/20
f(0)+f(1)=k  f′(x)+f(x)=k  (dy/(y−k))=−dx  ln ∣y−k∣=−x+C  y=k+ce^(−x)   f(0)=k+c  f(1)=k+(c/e)  f(0)+f(1)=k+c+k+(c/e)=k  k=−c(1+(1/e))  ⇒y=f(x)=c(e^(−x) −1−(1/e))
$${f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right)={k} \\ $$$${f}'\left({x}\right)+{f}\left({x}\right)={k} \\ $$$$\frac{{dy}}{{y}−{k}}=−{dx} \\ $$$$\mathrm{ln}\:\mid{y}−{k}\mid=−{x}+{C} \\ $$$${y}={k}+{ce}^{−{x}} \\ $$$${f}\left(\mathrm{0}\right)={k}+{c} \\ $$$${f}\left(\mathrm{1}\right)={k}+\frac{{c}}{{e}} \\ $$$${f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right)={k}+{c}+{k}+\frac{{c}}{{e}}={k} \\ $$$${k}=−{c}\left(\mathrm{1}+\frac{\mathrm{1}}{{e}}\right) \\ $$$$\Rightarrow{y}={f}\left({x}\right)={c}\left({e}^{−{x}} −\mathrm{1}−\frac{\mathrm{1}}{{e}}\right) \\ $$
Commented by Ar Brandon last updated on 07/Apr/20
Thanks
$${Thanks}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *