Menu Close

Determine-all-functions-f-R-R-such-that-the-equality-f-x-y-f-x-f-y-holds-for-all-x-y-R-Here-by-x-we-denote-the-greatest-integer-not-exceeding-x-




Question Number 117848 by john santu last updated on 14/Oct/20
Determine all functions f:R→R  such that the equality f([x] y)= f(x) [f(y) ]  holds for all x,y ∈R . Here  by [x] we   denote the greatest integer not exceeding x.
$${Determine}\:{all}\:{functions}\:{f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${such}\:{that}\:{the}\:{equality}\:{f}\left(\left[{x}\right]\:{y}\right)=\:{f}\left({x}\right)\:\left[{f}\left({y}\right)\:\right] \\ $$$${holds}\:{for}\:{all}\:{x},{y}\:\in\mathbb{R}\:.\:{Here}\:\:{by}\:\left[{x}\right]\:{we}\: \\ $$$${denote}\:{the}\:{greatest}\:{integer}\:{not}\:{exceeding}\:{x}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *