Menu Close

Determine-all-pairs-x-y-of-integers-satisfying-1-2-x-2-2x-1-y-2-




Question Number 97746 by bemath last updated on 09/Jun/20
Determine all pairs (x,y)  of integers satisfying 1+2^x +2^(2x+1) =y^2
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{pairs}\:\left(\mathrm{x},\mathrm{y}\right) \\ $$$$\mathrm{of}\:\mathrm{integers}\:\mathrm{satisfying}\:\mathrm{1}+\mathrm{2}^{\mathrm{x}} +\mathrm{2}^{\mathrm{2x}+\mathrm{1}} =\mathrm{y}^{\mathrm{2}} \: \\ $$
Commented by john santu last updated on 09/Jun/20
2^x (1+2^(x+1) ) = (y−1)(y+1)  show that the factors y−1 and y+1  are even, exactly one of them   divisible by 4. Hence x≥3 and one  of these factors is divisible by 2^(x−1)   but not by 2^x . so y = 2^(x−1) m+ε , m odd , ε = ±1  plugging this into the original   equation we obtain 2^x (1+2^(x+1) )=(2^(x−1) m+ε)^2 −1  = 2^(2x−2) m^2 +2^x mε  or equivalently 1+2^(x+1) =2^(x−2) m^2 +mε  ⇔ thus we have the complete  list solutions (x,y) : (0,2),(0,−2),  (4,23),(4,−23).
$$\mathrm{2}^{{x}} \left(\mathrm{1}+\mathrm{2}^{{x}+\mathrm{1}} \right)\:=\:\left({y}−\mathrm{1}\right)\left({y}+\mathrm{1}\right) \\ $$$${show}\:{that}\:{the}\:{factors}\:{y}−\mathrm{1}\:{and}\:{y}+\mathrm{1} \\ $$$${are}\:{even},\:\mathrm{exactly}\:\mathrm{one}\:\mathrm{of}\:\mathrm{them}\: \\ $$$$\mathrm{divisible}\:\mathrm{by}\:\mathrm{4}.\:\mathrm{Hence}\:\mathrm{x}\geqslant\mathrm{3}\:\mathrm{and}\:\mathrm{one} \\ $$$$\mathrm{of}\:\mathrm{these}\:\mathrm{factors}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2}^{\mathrm{x}−\mathrm{1}} \\ $$$$\mathrm{but}\:\mathrm{not}\:\mathrm{by}\:\mathrm{2}^{\mathrm{x}} .\:\mathrm{so}\:\mathrm{y}\:=\:\mathrm{2}^{\mathrm{x}−\mathrm{1}} \mathrm{m}+\epsilon\:,\:\mathrm{m}\:\mathrm{odd}\:,\:\epsilon\:=\:\pm\mathrm{1} \\ $$$$\mathrm{plugging}\:\mathrm{this}\:\mathrm{into}\:\mathrm{the}\:\mathrm{original}\: \\ $$$$\mathrm{equation}\:\mathrm{we}\:\mathrm{obtain}\:\mathrm{2}^{\mathrm{x}} \left(\mathrm{1}+\mathrm{2}^{\mathrm{x}+\mathrm{1}} \right)=\left(\mathrm{2}^{\mathrm{x}−\mathrm{1}} \mathrm{m}+\epsilon\right)^{\mathrm{2}} −\mathrm{1} \\ $$$$=\:\mathrm{2}^{\mathrm{2x}−\mathrm{2}} \mathrm{m}^{\mathrm{2}} +\mathrm{2}^{\mathrm{x}} \mathrm{m}\epsilon \\ $$$$\mathrm{or}\:\mathrm{equivalently}\:\mathrm{1}+\mathrm{2}^{\mathrm{x}+\mathrm{1}} =\mathrm{2}^{\mathrm{x}−\mathrm{2}} \mathrm{m}^{\mathrm{2}} +\mathrm{m}\epsilon \\ $$$$\Leftrightarrow\:\mathrm{thus}\:\mathrm{we}\:\mathrm{have}\:\mathrm{the}\:\mathrm{complete} \\ $$$$\mathrm{list}\:\mathrm{solutions}\:\left(\mathrm{x},\mathrm{y}\right)\::\:\left(\mathrm{0},\mathrm{2}\right),\left(\mathrm{0},−\mathrm{2}\right), \\ $$$$\left(\mathrm{4},\mathrm{23}\right),\left(\mathrm{4},−\mathrm{23}\right).\: \\ $$
Answered by Rasheed.Sindhi last updated on 18/Jun/20
1+2^x +2^(2x+1) =y^2            2(2^x )^2 +2^x +1−y^2 =0      2^x =((−1±(√(1−8(1−y^2 ))))/4)          =((−1±(√(−7+8y^2 ))))/4)           8y^2 −7=u^2             y^2 =((u^2 +7)/8)  u^2 =0,1,4,9,16,....  u^2 =1⇒y=±1  u^2 =25⇒y=±2  u^2 =121⇒y=±4    Continue
$$\mathrm{1}+\mathrm{2}^{\mathrm{x}} +\mathrm{2}^{\mathrm{2x}+\mathrm{1}} =\mathrm{y}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}\left(\mathrm{2}^{{x}} \right)^{\mathrm{2}} +\mathrm{2}^{{x}} +\mathrm{1}−{y}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\mathrm{2}^{{x}} =\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{8}\left(\mathrm{1}−{y}^{\mathrm{2}} \right)}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{−\mathrm{1}\pm\sqrt{\left.−\mathrm{7}+\mathrm{8}{y}^{\mathrm{2}} \right)}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{8}{y}^{\mathrm{2}} −\mathrm{7}={u}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{y}^{\mathrm{2}} =\frac{{u}^{\mathrm{2}} +\mathrm{7}}{\mathrm{8}} \\ $$$${u}^{\mathrm{2}} =\mathrm{0},\mathrm{1},\mathrm{4},\mathrm{9},\mathrm{16},…. \\ $$$${u}^{\mathrm{2}} =\mathrm{1}\Rightarrow{y}=\pm\mathrm{1} \\ $$$${u}^{\mathrm{2}} =\mathrm{25}\Rightarrow{y}=\pm\mathrm{2} \\ $$$${u}^{\mathrm{2}} =\mathrm{121}\Rightarrow{y}=\pm\mathrm{4} \\ $$$$ \\ $$$${Continue}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *