Menu Close

Determine-all-pairs-x-y-of-integers-satisfying-1-2-x-2-2x-1-y-2-




Question Number 97746 by bemath last updated on 09/Jun/20
Determine all pairs (x,y)  of integers satisfying 1+2^x +2^(2x+1) =y^2
Determineallpairs(x,y)ofintegerssatisfying1+2x+22x+1=y2
Commented by john santu last updated on 09/Jun/20
2^x (1+2^(x+1) ) = (y−1)(y+1)  show that the factors y−1 and y+1  are even, exactly one of them   divisible by 4. Hence x≥3 and one  of these factors is divisible by 2^(x−1)   but not by 2^x . so y = 2^(x−1) m+ε , m odd , ε = ±1  plugging this into the original   equation we obtain 2^x (1+2^(x+1) )=(2^(x−1) m+ε)^2 −1  = 2^(2x−2) m^2 +2^x mε  or equivalently 1+2^(x+1) =2^(x−2) m^2 +mε  ⇔ thus we have the complete  list solutions (x,y) : (0,2),(0,−2),  (4,23),(4,−23).
2x(1+2x+1)=(y1)(y+1)showthatthefactorsy1andy+1areeven,exactlyoneofthemdivisibleby4.Hencex3andoneofthesefactorsisdivisibleby2x1butnotby2x.soy=2x1m+ϵ,modd,ϵ=±1pluggingthisintotheoriginalequationweobtain2x(1+2x+1)=(2x1m+ϵ)21=22x2m2+2xmϵorequivalently1+2x+1=2x2m2+mϵthuswehavethecompletelistsolutions(x,y):(0,2),(0,2),(4,23),(4,23).
Answered by Rasheed.Sindhi last updated on 18/Jun/20
1+2^x +2^(2x+1) =y^2            2(2^x )^2 +2^x +1−y^2 =0      2^x =((−1±(√(1−8(1−y^2 ))))/4)          =((−1±(√(−7+8y^2 ))))/4)           8y^2 −7=u^2             y^2 =((u^2 +7)/8)  u^2 =0,1,4,9,16,....  u^2 =1⇒y=±1  u^2 =25⇒y=±2  u^2 =121⇒y=±4    Continue
1+2x+22x+1=y22(2x)2+2x+1y2=02x=1±18(1y2)4=1±7+8y2)48y27=u2y2=u2+78u2=0,1,4,9,16,.u2=1y=±1u2=25y=±2u2=121y=±4Continue

Leave a Reply

Your email address will not be published. Required fields are marked *