Menu Close

Determine-all-pairs-x-y-of-integers-which-satisfy-x-3-3x-y-0-




Question Number 151322 by mathdanisur last updated on 20/Aug/21
Determine all pairs  (x;y)  of integers  which satisfy:  x^3  - 3x + y = 0
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{pairs}\:\:\left(\mathrm{x};\mathrm{y}\right)\:\:\mathrm{of}\:\mathrm{integers} \\ $$$$\mathrm{which}\:\mathrm{satisfy}: \\ $$$$\mathrm{x}^{\mathrm{3}} \:-\:\mathrm{3x}\:+\:\mathrm{y}\:=\:\mathrm{0} \\ $$
Commented by mathdanisur last updated on 20/Aug/21
with x real, y integer
$$\mathrm{with}\:\boldsymbol{\mathrm{x}}\:\mathrm{real},\:\boldsymbol{\mathrm{y}}\:\mathrm{integer} \\ $$
Answered by Rasheed.Sindhi last updated on 21/Aug/21
x^3  - 3x + y = 0 ; x∈R,y∈Z  x(x^2 −3)=y  y=0⇒x=0,3 when xy∈Z  y=±1⇒x^3 −3x∓1=0  y=±2⇒x^3 −3x∓2=0  ....  ...  Infinite solutions.
$$\mathrm{x}^{\mathrm{3}} \:-\:\mathrm{3x}\:+\:\mathrm{y}\:=\:\mathrm{0}\:;\:\mathrm{x}\in\mathbb{R},\mathrm{y}\in\mathbb{Z} \\ $$$$\mathrm{x}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{3}\right)=\mathrm{y} \\ $$$$\mathrm{y}=\mathrm{0}\Rightarrow\mathrm{x}=\mathrm{0},\mathrm{3}\:{when}\:\mathrm{xy}\in\mathbb{Z} \\ $$$$\mathrm{y}=\pm\mathrm{1}\Rightarrow\mathrm{x}^{\mathrm{3}} −\mathrm{3x}\mp\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{y}=\pm\mathrm{2}\Rightarrow\mathrm{x}^{\mathrm{3}} −\mathrm{3x}\mp\mathrm{2}=\mathrm{0} \\ $$$$…. \\ $$$$… \\ $$$${Infinite}\:{solutions}. \\ $$
Commented by mathdanisur last updated on 20/Aug/21
Thank You Ser
$$\mathrm{Thank}\:\mathrm{You}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *