Menu Close

Determine-all-the-derivable-functions-f-R-R-which-satisfy-f-x-3-f-0-f-x-f-0-x-2-x-0-




Question Number 153162 by mathdanisur last updated on 05/Sep/21
Determine all the derivable functions  f:R→R  which satisfy  ((f(x^3 ) - f(0))/(f(x) - f(0))) = x^2   ;  ∀x≠0
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{the}\:\mathrm{derivable}\:\mathrm{functions} \\ $$$$\mathrm{f}:\mathbb{R}\rightarrow\mathbb{R}\:\:\mathrm{which}\:\mathrm{satisfy} \\ $$$$\frac{\mathrm{f}\left(\mathrm{x}^{\mathrm{3}} \right)\:-\:\mathrm{f}\left(\mathrm{0}\right)}{\mathrm{f}\left(\mathrm{x}\right)\:-\:\mathrm{f}\left(\mathrm{0}\right)}\:=\:\mathrm{x}^{\mathrm{2}} \:\:;\:\:\forall\mathrm{x}\neq\mathrm{0} \\ $$
Answered by aleks041103 last updated on 05/Sep/21
let g(x)=f(x)−f(0)  g(x^3 )=x^2 g(x)⇒((g(x^3 ))/x^3 )=((g(x))/x)  let h(x)=g(x)/x=((f(x)−f(0))/x)  h(x^3 )=h(x)  by induction  h(x)=h(x^3^n  )=h(x^3^(−n)  ), for ∀n∈N  let 1>ε>0.  case 1: x∈(0,1)  we can always find some n such that  1>a=x^3^(−n)  >1−ε  Then for ∀x∈(0,1) and any 1>ε>0,   exists a number a∈[1−ε,1) such that  h(x)=h(a).  Since we can take ε to be arbitrairly  small, then  h(x)=lim_(ε→0)  h(1>a>1−ε)  Since f(x) is differentiable, then h(x)  is too(for x≠0) and so h is continuous  ⇒h(x∈(0,1))=lim_(ε→0)  h(1>a>1−ε)=h(1).  case 2: x∈(1,∞)  by analogy, we can always find n such that  x^3^(−n)  ∈(1,1+ε).  Then again  h(x>1)=lim_(ε→0)  h(1<a<1+ε)=h(1)  Conclusion:  h(x>0)=h(1)=a=const.    Analogously one can prove  h(x<0)=h(−1)=b=const.    Then  f(x)= { ((ax+f(0), x≥0)),((bx+f(0), x<0)) :}  But for f(x) to be diff. at x=0 we need  a=b.  ⇒f(x)=ax+f(0) is the only solution!
$${let}\:{g}\left({x}\right)={f}\left({x}\right)−{f}\left(\mathrm{0}\right) \\ $$$${g}\left({x}^{\mathrm{3}} \right)={x}^{\mathrm{2}} {g}\left({x}\right)\Rightarrow\frac{{g}\left({x}^{\mathrm{3}} \right)}{{x}^{\mathrm{3}} }=\frac{{g}\left({x}\right)}{{x}} \\ $$$${let}\:{h}\left({x}\right)={g}\left({x}\right)/{x}=\frac{{f}\left({x}\right)−{f}\left(\mathrm{0}\right)}{{x}} \\ $$$${h}\left({x}^{\mathrm{3}} \right)={h}\left({x}\right) \\ $$$${by}\:{induction} \\ $$$${h}\left({x}\right)={h}\left({x}^{\mathrm{3}^{{n}} } \right)={h}\left({x}^{\mathrm{3}^{−{n}} } \right),\:{for}\:\forall{n}\in\mathbb{N} \\ $$$${let}\:\mathrm{1}>\varepsilon>\mathrm{0}. \\ $$$$\boldsymbol{{c}}{ase}\:\mathrm{1}:\:{x}\in\left(\mathrm{0},\mathrm{1}\right) \\ $$$${we}\:{can}\:{always}\:{find}\:{some}\:{n}\:{such}\:{that} \\ $$$$\mathrm{1}>{a}={x}^{\mathrm{3}^{−{n}} } >\mathrm{1}−\varepsilon \\ $$$${Then}\:{for}\:\forall{x}\in\left(\mathrm{0},\mathrm{1}\right)\:{and}\:{any}\:\mathrm{1}>\varepsilon>\mathrm{0},\: \\ $$$${exists}\:{a}\:{number}\:{a}\in\left[\mathrm{1}−\varepsilon,\mathrm{1}\right)\:{such}\:{that} \\ $$$${h}\left({x}\right)={h}\left({a}\right). \\ $$$${Since}\:{we}\:{can}\:{take}\:\varepsilon\:{to}\:{be}\:{arbitrairly} \\ $$$${small},\:{then} \\ $$$${h}\left({x}\right)=\underset{\varepsilon\rightarrow\mathrm{0}} {\mathrm{lim}}\:{h}\left(\mathrm{1}>{a}>\mathrm{1}−\varepsilon\right) \\ $$$${Since}\:{f}\left({x}\right)\:{is}\:{differentiable},\:{then}\:{h}\left({x}\right) \\ $$$${is}\:{too}\left({for}\:{x}\neq\mathrm{0}\right)\:{and}\:{so}\:{h}\:{is}\:{continuous} \\ $$$$\Rightarrow{h}\left({x}\in\left(\mathrm{0},\mathrm{1}\right)\right)=\underset{\varepsilon\rightarrow\mathrm{0}} {\mathrm{lim}}\:{h}\left(\mathrm{1}>{a}>\mathrm{1}−\varepsilon\right)={h}\left(\mathrm{1}\right). \\ $$$$\boldsymbol{{case}}\:\mathrm{2}:\:\boldsymbol{{x}}\in\left(\mathrm{1},\infty\right) \\ $$$${by}\:{analogy},\:{we}\:{can}\:{always}\:{find}\:{n}\:{such}\:{that} \\ $$$${x}^{\mathrm{3}^{−{n}} } \in\left(\mathrm{1},\mathrm{1}+\varepsilon\right). \\ $$$${Then}\:{again} \\ $$$${h}\left({x}>\mathrm{1}\right)=\underset{\varepsilon\rightarrow\mathrm{0}} {\mathrm{lim}}\:{h}\left(\mathrm{1}<{a}<\mathrm{1}+\varepsilon\right)={h}\left(\mathrm{1}\right) \\ $$$$\boldsymbol{{Conclusion}}: \\ $$$${h}\left({x}>\mathrm{0}\right)={h}\left(\mathrm{1}\right)={a}={const}. \\ $$$$ \\ $$$${Analogously}\:{one}\:{can}\:{prove} \\ $$$${h}\left({x}<\mathrm{0}\right)={h}\left(−\mathrm{1}\right)={b}={const}. \\ $$$$ \\ $$$${Then} \\ $$$${f}\left({x}\right)=\begin{cases}{{ax}+{f}\left(\mathrm{0}\right),\:{x}\geqslant\mathrm{0}}\\{{bx}+{f}\left(\mathrm{0}\right),\:{x}<\mathrm{0}}\end{cases} \\ $$$${But}\:{for}\:{f}\left({x}\right)\:{to}\:{be}\:{diff}.\:{at}\:{x}=\mathrm{0}\:{we}\:{need} \\ $$$${a}={b}. \\ $$$$\Rightarrow{f}\left({x}\right)={ax}+{f}\left(\mathrm{0}\right)\:{is}\:{the}\:{only}\:{solution}! \\ $$
Commented by mathdanisur last updated on 06/Sep/21
Thank you ser nice
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{ser}\:\mathrm{nice} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *