Menu Close

Determine-all-the-derivable-functions-f-R-R-which-satisfy-f-x-3-f-0-f-x-f-0-x-2-x-0-




Question Number 153162 by mathdanisur last updated on 05/Sep/21
Determine all the derivable functions  f:R→R  which satisfy  ((f(x^3 ) - f(0))/(f(x) - f(0))) = x^2   ;  ∀x≠0
Determineallthederivablefunctionsf:RRwhichsatisfyf(x3)f(0)f(x)f(0)=x2;x0
Answered by aleks041103 last updated on 05/Sep/21
let g(x)=f(x)−f(0)  g(x^3 )=x^2 g(x)⇒((g(x^3 ))/x^3 )=((g(x))/x)  let h(x)=g(x)/x=((f(x)−f(0))/x)  h(x^3 )=h(x)  by induction  h(x)=h(x^3^n  )=h(x^3^(−n)  ), for ∀n∈N  let 1>ε>0.  case 1: x∈(0,1)  we can always find some n such that  1>a=x^3^(−n)  >1−ε  Then for ∀x∈(0,1) and any 1>ε>0,   exists a number a∈[1−ε,1) such that  h(x)=h(a).  Since we can take ε to be arbitrairly  small, then  h(x)=lim_(ε→0)  h(1>a>1−ε)  Since f(x) is differentiable, then h(x)  is too(for x≠0) and so h is continuous  ⇒h(x∈(0,1))=lim_(ε→0)  h(1>a>1−ε)=h(1).  case 2: x∈(1,∞)  by analogy, we can always find n such that  x^3^(−n)  ∈(1,1+ε).  Then again  h(x>1)=lim_(ε→0)  h(1<a<1+ε)=h(1)  Conclusion:  h(x>0)=h(1)=a=const.    Analogously one can prove  h(x<0)=h(−1)=b=const.    Then  f(x)= { ((ax+f(0), x≥0)),((bx+f(0), x<0)) :}  But for f(x) to be diff. at x=0 we need  a=b.  ⇒f(x)=ax+f(0) is the only solution!
letg(x)=f(x)f(0)g(x3)=x2g(x)g(x3)x3=g(x)xleth(x)=g(x)/x=f(x)f(0)xh(x3)=h(x)byinductionh(x)=h(x3n)=h(x3n),fornNlet1>ε>0.case1:x(0,1)wecanalwaysfindsomensuchthat1>a=x3n>1εThenforx(0,1)andany1>ε>0,existsanumbera[1ε,1)suchthath(x)=h(a).Sincewecantakeεtobearbitrairlysmall,thenh(x)=limε0h(1>a>1ε)Sincef(x)isdifferentiable,thenh(x)istoo(forx0)andsohiscontinuoush(x(0,1))=limε0h(1>a>1ε)=h(1).case2:x(1,)byanalogy,wecanalwaysfindnsuchthatx3n(1,1+ε).Thenagainh(x>1)=limε0h(1<a<1+ε)=h(1)Conclusion:h(x>0)=h(1)=a=const.Analogouslyonecanproveh(x<0)=h(1)=b=const.Thenf(x)={ax+f(0),x0bx+f(0),x<0Butforf(x)tobediff.atx=0weneeda=b.f(x)=ax+f(0)istheonlysolution!
Commented by mathdanisur last updated on 06/Sep/21
Thank you ser nice
Thankyousernice

Leave a Reply

Your email address will not be published. Required fields are marked *