Menu Close

Determine-all-the-perfect-squares-on-form-p-n-1-where-p-is-a-prime-number-and-n-a-positive-integer-




Question Number 154012 by mathdanisur last updated on 13/Sep/21
Determine all the perfect squares on  form  p^n  + 1  where  p  is a prime number  and  n  a positive integer.
Determinealltheperfectsquaresonformpn+1wherepisaprimenumberandnapositiveinteger.
Commented by Rasheed.Sindhi last updated on 13/Sep/21
For some cases  p^n  + 1=q^2 ⇒q^2 −1=p^n   (q−1)(q+1)=p^n   n=1: (q−1)(q+1)=p           q−1=1∧ q+1=p            q=2 ∧ p=3             q^2 =4  n=2:(q−1)(q+1)=p^2       case1: q−1=1∧ q+1=p^2                    q=2  ∧ p^2 =3 (false)      case2: q−1=q+1=p(false)      For n=2 no p  n=3:q^2 −1=p^3       p^3 +1=q^2      (p+1)(p^2 −p+1)=q^2        p+1=p^2 −p+1       p^2 −2p=0       p(p−2)=0      p=0(false) ∨ p=2 (true)      p=2⇒q^2 =p^3 +1=2^3 +1=9            q^2 =9
Forsomecasespn+1=q2q21=pn(q1)(q+1)=pnn=1:(q1)(q+1)=pq1=1q+1=pq=2p=3q2=4n=2:(q1)(q+1)=p2case1:q1=1q+1=p2q=2p2=3(false)case2:q1=q+1=p(false)Forn=2nopn=3:q21=p3p3+1=q2(p+1)(p2p+1)=q2p+1=p2p+1p22p=0p(p2)=0p=0(false)p=2(true)p=2q2=p3+1=23+1=9q2=9
Commented by mathdanisur last updated on 13/Sep/21
Very nice Ser, thank you
VeryniceSer,thankyou
Answered by Rasheed.Sindhi last updated on 14/Sep/21
p^n  + 1=q^2   p^n  =(q−1)(q+1)  q−1=p^m ⇒q+1=p^(n−m)   p^(n−m) −p^m =(q+1)−(q−1)=2  p^(n−m) −p^m =2  (Two powers of a prime having   difference 2)      2^2 −2^1 =2⇒q−1=2 ∧ q+1=4                          ⇒q^2 −1=8⇒q^2 =9  (Only these two powers of 2 have   difference 2)^★       3^1 −3^0 =2⇒q−1=3^0  ∧ q+1=3^1                           ⇒q^2 −1=3⇒q^2 =4  (Only these two powers of 3 have   difference 2)^(★★)     p>3:p^m −p^n >2 for any m,n
pn+1=q2pn=(q1)(q+1)q1=pmq+1=pnmpnmpm=(q+1)(q1)=2pnmpm=2(Twopowersofaprimehavingdifference2)2221=2q1=2q+1=4q21=8q2=9(Onlythesetwopowersof2havedifference2)3130=2q1=30q+1=31q21=3q2=4(Onlythesetwopowersof3havedifference2)p>3:pmpn>2foranym,n
Commented by Rasheed.Sindhi last updated on 14/Sep/21
^★ 2^1 −2^0 =1(×)  2^2 −2^1 =2(✓)  2^m −2^n >2(×)  for m,n>2 ∧ m≠n    ^(★★) 3^1 −3^0 =2(✓)  3^m −3^n >2(×) for m,n>1∧ m≠n
2120=1(×)2221=2()2m2n>2(×)form,n>2mn3130=2()3m3n>2(×)form,n>1mn
Commented by mathdanisur last updated on 14/Sep/21
very nice Ser thanks
veryniceSerthanks

Leave a Reply

Your email address will not be published. Required fields are marked *