Question Number 155100 by mathdanisur last updated on 25/Sep/21
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{triangle}\:\mathrm{with}: \\ $$$$\mathrm{1}.\mathrm{The}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{sides}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{is}\:\mathrm{prime}\:\mathrm{number}. \\ $$$$\mathrm{2}.\mathrm{The}\:\mathrm{semiperimetr}\:\mathrm{is}\:\mathrm{positive}\:\mathrm{integer} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{area}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{with}\:\mathrm{perimetr}. \\ $$
Commented by MJS_new last updated on 25/Sep/21
$$\mathrm{if}\:{a}<{b}<{c}\:\mathrm{there}\:\mathrm{are}\:\mathrm{only}\:\mathrm{4}\:\mathrm{I}\:\mathrm{think} \\ $$$$\mathrm{5}/\mathrm{12}/\mathrm{13} \\ $$$$\mathrm{6}/\mathrm{25}/\mathrm{29} \\ $$$$\mathrm{7}/\mathrm{15}/\mathrm{20} \\ $$$$\mathrm{9}/\mathrm{10}/\mathrm{17} \\ $$$$ \\ $$$$\:\:\:\:\:\left[\mathrm{there}'\mathrm{s}\:\mathrm{a}\:\mathrm{5}^{\mathrm{th}} \:\mathrm{one}\:\mathrm{without}\:\mathrm{primes}:\:\mathrm{6}/\mathrm{8}/\mathrm{10}\right] \\ $$
Commented by mathdanisur last updated on 25/Sep/21
$$\mathrm{perfect}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{thankyou} \\ $$
Answered by Rasheed.Sindhi last updated on 26/Sep/21
$$\:\bullet{a},{b},{c},{s}=\frac{{a}+{b}+{c}}{\mathrm{2}}\in\mathbb{Z}^{+} \wedge\:{a}\left({say}\right)\in\mathbb{P}\: \\ $$$$\:\bullet\underset{{where}\:{s}=\left({a}+{b}+{c}\right)/\mathrm{2}} {\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}\:={a}+{b}+{c}} \\ $$$$\frac{{a}+{b}+{c}}{\mathrm{2}}\in\mathbb{Z}^{+} \Rightarrow{a}+{b}+{c}\in\mathbb{E} \\ $$$$\Rightarrow\begin{cases}{{a},{b},{c}\:{all}\:{are}\:{eve}\:{even}\Rightarrow{prime}\:{is}\:\mathrm{2}}\\{\mathcal{T}{wo}\:{of}\:{a},{b},{c}\:{are}\:{odd},{the}\:{third}\:{is}\:{even}.}\end{cases} \\ $$$$\mathrm{C}-\mathrm{1}:\:{a},{b},{c}\in\mathbb{E}\Rightarrow{a}\left({prime}\right)=\mathrm{2} \\ $$$$\:\:\:\:\:\:\:{b}=\mathrm{2}{m},{c}=\mathrm{2}{n}\:;\:{m},{n}\in\mathbb{Z}^{+} \\ $$$$\:\:\:{s}=\left(\mathrm{2}+\mathrm{2}{m}+\mathrm{2}{n}\right)/\mathrm{2}={m}+{n}+\mathrm{1} \\ $$$$\:\:\:{s}−{a}=\mathrm{1}+{m}+{n}−\mathrm{2}={m}+{n}−\mathrm{1} \\ $$$$\:\:\:{s}−{b}=\mathrm{1}+{m}+{n}−\mathrm{2}{m}=−{m}+{n}+\mathrm{1} \\ $$$$\:\:\:{s}−{c}=\mathrm{1}+{m}+{n}−\mathrm{2}{n}={m}−{n}+\mathrm{1} \\ $$$$\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}={a}+{b}+{c} \\ $$$$\blacktriangleright\sqrt{\left({m}+{n}+\mathrm{1}\right)\left({m}+{n}−\mathrm{1}\right)\left(−{m}+{n}+\mathrm{1}\right)\left({m}−{n}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{m}+\mathrm{2}{n}+\mathrm{2} \\ $$$$\blacktriangleright\:\left({m}+{n}+\mathrm{1}\right)\left({m}+{n}−\mathrm{1}\right)\left(−{m}+{n}+\mathrm{1}\right)\left({m}−{n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{4}\left({m}+{n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\blacktriangleright\:\left({m}+{n}−\mathrm{1}\right)\left(−{m}+{n}+\mathrm{1}\right)\left({m}−{n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{4}\left({m}+{n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\left({o},{o}\right)-{case}:{m},{n}\in\mathbb{O} \\ $$$$\:\:\:\:\:\begin{array}{|c|}{\left({o},{o}\right)-{case}:{m},{n}\in\mathbb{O}}\\\hline\end{array}\: \\ $$$$\:\:\:\:\mathrm{RHS}\:{is}\:{clearly}\:\boldsymbol{{even}}. \\ $$$$\:\:\:\:\:\mathrm{LHS}:\left({o}+{o}−{o}\right)\left(−{o}+{o}+{o}\right)\left({o}−{o}+{o}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({e}−{o}\right)\left({e}+{o}\right)\left({e}+{o}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({o}\right)\left({o}\right)\left({o}\right)={o} \\ $$$$\:\:\:\:\:\:\mathrm{LHS}\:{is}\:\boldsymbol{{odd}}. \\ $$$$\:\:\:\:\:\:{Contradiction}. \\ $$$$\:\:\:\:\:\begin{array}{|c|}{\left({e},{e}\right)-{case}:{m},{n}\in\mathbb{E}}\\\hline\end{array}\: \\ $$$$\:\:\:\:\:\:\mathrm{RHS}=\boldsymbol{{even}} \\ $$$$\:\:\:\:\mathrm{LHS}:\left({e}+{e}−{o}\right)\left(−{e}+{e}+{o}\right)\left({e}−{e}+{o}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({e}−{o}\right)\left({e}+{o}\right)\left({e}+{o}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({o}\right)\left({o}\right)\left({o}\right)={o} \\ $$$$\:\:\:\:\:\:{Contradiction}. \\ $$$$\:\:\:\:\:\begin{array}{|c|}{\left({e},{o}\right)\:{or}\:\left({o},{e}\right)-{case}:{m}\in\mathbb{E},{n}\in\mathbb{O}}\\\hline\end{array}\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${Continue} \\ $$
Commented by talminator2856791 last updated on 26/Sep/21
$$\:\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{put}\:\mathrm{it}\:\mathrm{in}\:\mathrm{a}\:\mathrm{box}? \\ $$
Commented by Rasheed.Sindhi last updated on 26/Sep/21
$$\:\:{The}\:\:{manu}\:{that}\:{appears}\:{on}\:{click} \\ $$$${of}\:{matrix}-\:{button}\:{contains}\:\boldsymbol{{table}} \\ $$$$\boldsymbol{{with}}\:\boldsymbol{{borders}}.{I}'{ve}\:{deleted}\:{its}\:{row}/{s} \\ $$$${except}\:{one}\:{which}\:{I}'{ve}\:{used}\:{as}\:{box}. \\ $$
Commented by talminator2856791 last updated on 05/Oct/21
$$\:\mathrm{how}\:\mathrm{to}\:\mathrm{delete}\:\mathrm{the}\:\mathrm{rows}? \\ $$
Commented by Rasheed.Sindhi last updated on 05/Oct/21
$${When}\:{you}\:{are}\:{in}\:{a}\:{row}\:\left({that}\:{you}\:{want}\right. \\ $$$$\left.{to}\:{delete}\right){open}\:{side}\:{mau}\:{and}\:{click} \\ $$$$'{delete}\:{row}'. \\ $$