Menu Close

Determine-all-triangle-with-1-The-lengths-of-sides-positive-integers-and-at-least-one-is-prime-number-2-The-semiperimetr-is-positive-integer-and-area-is-equal-with-perimetr-




Question Number 155100 by mathdanisur last updated on 25/Sep/21
Determine all triangle with:  1.The lengths of sides positive integers       and at least one is prime number.  2.The semiperimetr is positive integer       and area is equal with perimetr.
Determinealltrianglewith:1.Thelengthsofsidespositiveintegersandatleastoneisprimenumber.2.Thesemiperimetrispositiveintegerandareaisequalwithperimetr.
Commented by MJS_new last updated on 25/Sep/21
if a<b<c there are only 4 I think  5/12/13  6/25/29  7/15/20  9/10/17         [there′s a 5^(th)  one without primes: 6/8/10]
ifa<b<cthereareonly4Ithink5/12/136/25/297/15/209/10/17[theresa5thonewithoutprimes:6/8/10]
Commented by mathdanisur last updated on 25/Sep/21
perfect my dear thankyou
perfectmydearthankyou
Answered by Rasheed.Sindhi last updated on 26/Sep/21
 •a,b,c,s=((a+b+c)/2)∈Z^+ ∧ a(say)∈P    •(√(s(s−a)(s−b)(s−c))) =a+b+c_(where s=(a+b+c)/2)   ((a+b+c)/2)∈Z^+ ⇒a+b+c∈E  ⇒ { ((a,b,c all are eve even⇒prime is 2)),((Two of a,b,c are odd,the third is even.)) :}  C-1: a,b,c∈E⇒a(prime)=2         b=2m,c=2n ; m,n∈Z^+      s=(2+2m+2n)/2=m+n+1     s−a=1+m+n−2=m+n−1     s−b=1+m+n−2m=−m+n+1     s−c=1+m+n−2n=m−n+1  (√(s(s−a)(s−b)(s−c)))=a+b+c  ▶(√((m+n+1)(m+n−1)(−m+n+1)(m−n+1)))                                                           =2m+2n+2  ▶ (m+n+1)(m+n−1)(−m+n+1)(m−n+1)                                                        =4(m+n+1)^2   ▶ (m+n−1)(−m+n+1)(m−n+1)                                                        =4(m+n+1)      (o,o)-case:m,n∈O        determinant ((((o,o)-case:m,n∈O)))       RHS is clearly even.       LHS:(o+o−o)(−o+o+o)(o−o+o)               =(e−o)(e+o)(e+o)               =(o)(o)(o)=o        LHS is odd.        Contradiction.        determinant ((((e,e)-case:m,n∈E)))         RHS=even      LHS:(e+e−o)(−e+e+o)(e−e+o)                  (e−o)(e+o)(e+o)                   (o)(o)(o)=o        Contradiction.        determinant ((((e,o) or (o,e)-case:m∈E,n∈O)))         Continue
a,b,c,s=a+b+c2Z+a(say)Ps(sa)(sb)(sc)=a+b+cwheres=(a+b+c)/2a+b+c2Z+a+b+cE{a,b,callareeveevenprimeis2Twoofa,b,careodd,thethirdiseven.C1:a,b,cEa(prime)=2b=2m,c=2n;m,nZ+s=(2+2m+2n)/2=m+n+1sa=1+m+n2=m+n1sb=1+m+n2m=m+n+1sc=1+m+n2n=mn+1s(sa)(sb)(sc)=a+b+c(m+n+1)(m+n1)(m+n+1)(mn+1)=2m+2n+2(m+n+1)(m+n1)(m+n+1)(mn+1)=4(m+n+1)2(m+n1)(m+n+1)(mn+1)=4(m+n+1)(o,o)case:m,nO(o,o)case:m,nORHSisclearly\boldsymboleven.LHS:(o+oo)(o+o+o)(oo+o)=(eo)(e+o)(e+o)=(o)(o)(o)=oLHSis\boldsymbolodd.Contradiction.(e,e)case:m,nERHS=\boldsymbolevenLHS:(e+eo)(e+e+o)(ee+o)(eo)(e+o)(e+o)(o)(o)(o)=oContradiction.(e,o)or(o,e)case:mE,nOContinue
Commented by talminator2856791 last updated on 26/Sep/21
 how did you put it in a box?
howdidyouputitinabox?
Commented by Rasheed.Sindhi last updated on 26/Sep/21
  The  manu that appears on click  of matrix- button contains table  with borders.I′ve deleted its row/s  except one which I′ve used as box.
Themanuthatappearsonclickofmatrixbuttoncontains\boldsymboltable\boldsymbolwith\boldsymbolborders.Ivedeleteditsrow/sexceptonewhichIveusedasbox.
Commented by talminator2856791 last updated on 05/Oct/21
 how to delete the rows?
howtodeletetherows?
Commented by Rasheed.Sindhi last updated on 05/Oct/21
When you are in a row (that you want  to delete)open side mau and click  ′delete row′.
Whenyouareinarow(thatyouwanttodelete)opensidemauandclickdeleterow.

Leave a Reply

Your email address will not be published. Required fields are marked *