Menu Close

Determine-all-triplets-a-b-c-of-positive-integers-which-satisfy-1-a-1-b-1-c-1-2-




Question Number 152753 by mathdanisur last updated on 01/Sep/21
Determine all triplets (a;b;c) of positive  integers which satisfy:  (1/a) + (1/b) + (1/c) = (1/2)
Determinealltriplets(a;b;c)ofpositiveintegerswhichsatisfy:1a+1b+1c=12
Commented by Rasheed.Sindhi last updated on 01/Sep/21
Determine all triplets (a;b;c) of positive  integers which satisfy:  (1/a) + (1/b) + (1/c) = (1/2)  •C1:a=b=c      a=b=c=k(say)  (1/k)+(1/k)+(1/k)=(1/2)  (3/k)=(1/2)⇒k=6  a=b=c=6  •C2:b=c  b=c=k(say)  (1/a)+(1/k)+(1/k)=(1/2)  ((k+2a)/(ak))=(1/2)  2k+4a=ak  2(k+2a)=ak  2∣a ∨ 2∣k ∨ (2∣a ∧ 2∣k)  ★ 2∣a ∨ 2∣k ∨ (2∣a ∧ 2∣k):  Let a=2m  2(k+2a)=ak⇒2(k+2(2m))=(2m)k  2(k+4m)=2mk  k+4m=mk  m=(k/(k−4))  possible values of k for which m∈Z^+   k=5,6,8⇒m=5,3,2  b=c=k=5⇒a=2m=10  b=c=k=6⇒a=2m=6  b=c=k=8⇒a=2m=4  o ★ 2∣a ∨ 2∣k ∨ (2∣a ∧ 2∣k):  k=2m  2(k+2a)=ak⇒2(2m+2a)=2ma       2m+2a=ma_((m or a ∈E^+ ))        a=((2m)/(m−2))  possible positive integral values of m  for which a is also positive integer.  m=3,4,6⇒a=6,4,3  b=c=k=2m=6,8,12  (6,6,6),(4,8,8),(3,12,12)  {a,b,c}  ={3,12,12},{4,8,8},{10,5,5},{6,6,6}   ★ 2∣a ∨ 2∣k ∨ (2∣a ∧ 2∣k):  a=2m,k=2n  2(k+2a)=ak⇒2(2n+2.2m)=2m.2n  4(n+2m)=4mn  n+2m=mn  mn−2m=n  m=(n/(n−2))  possible values of n  n=3,4⇒m=3,2  a=2m=6,4; b=c=k=2n=6,8  (a,b,c)=(6,6,6),(4,8,8)  {a,b,c}  ={3,12,12},{4,8,8},{10,5,5},{6,6,6}  •C3: a≠b≠c≠a  a=k,b=pk,c=qk ;p,q∈Z^+     (1/k)+(1/(pk))+(1/(qk))=(1/2)  ((p+q+pq)/(pqk))=(1/2)  2(p+q+pq)=pqk  2∣p: p=2m  2(2m+q+pq)=(2m)qk  2m+q+2mq=qmk  2m(1+q)=qmk−q  2m(1+q)=q(mk−1)  (q/(q+1))=((2m)/(mk−1))  .....  ...  (6,12,4)...  Continue
Determinealltriplets(a;b;c)ofpositiveintegerswhichsatisfy:1a+1b+1c=12C1:a=b=ca=b=c=k(say)1k+1k+1k=123k=12k=6a=b=c=6C2:b=cb=c=k(say)1a+1k+1k=12k+2aak=122k+4a=ak2(k+2a)=ak2a2k(2a2k)2a2k(2a2k):Leta=2m2(k+2a)=ak2(k+2(2m))=(2m)k2(k+4m)=2mkk+4m=mkm=kk4possiblevaluesofkforwhichmZ+k=5,6,8m=5,3,2b=c=k=5a=2m=10b=c=k=6a=2m=6b=c=k=8a=2m=4o2a2k(2a2k):k=2m2(k+2a)=ak2(2m+2a)=2ma2m+2a=ma(moraE+)a=2mm2possiblepositiveintegralvaluesofmforwhichaisalsopositiveinteger.m=3,4,6a=6,4,3b=c=k=2m=6,8,12(6,6,6),(4,8,8),(3,12,12){a,b,c}={3,12,12},{4,8,8},{10,5,5},{6,6,6}2a2k(2a2k):a=2m,k=2n2(k+2a)=ak2(2n+2.2m)=2m.2n4(n+2m)=4mnn+2m=mnmn2m=nm=nn2possiblevaluesofnn=3,4m=3,2a=2m=6,4;b=c=k=2n=6,8(a,b,c)=(6,6,6),(4,8,8){a,b,c}={3,12,12},{4,8,8},{10,5,5},{6,6,6}C3:abcaa=k,b=pk,c=qk;p,qZ+1k+1pk+1qk=12p+q+pqpqk=122(p+q+pq)=pqk2p:p=2m2(2m+q+pq)=(2m)qk2m+q+2mq=qmk2m(1+q)=qmkq2m(1+q)=q(mk1)qq+1=2mmk1..(6,12,4)Continue
Commented by mathdanisur last updated on 02/Sep/21
Very nice Ser thaankyou
VeryniceSerthaankyou
Commented by Rasheed.Sindhi last updated on 02/Sep/21
Pl write all answers, if you have.
Plwriteallanswers,ifyouhave.
Commented by mathdanisur last updated on 02/Sep/21
(3,7,42);(3,8,24);(3,9,18);(3,10,15)  (3,42,12);(4,5,20);(4,6,12);(4,8,8)  (5,5,10);(6,6,6) and permutations
(3,7,42);(3,8,24);(3,9,18);(3,10,15)(3,42,12);(4,5,20);(4,6,12);(4,8,8)(5,5,10);(6,6,6)andpermutations
Commented by Rasheed.Sindhi last updated on 02/Sep/21
Thank Yo⋓ S r!
ThankYoSr!
Commented by Rasheed.Sindhi last updated on 02/Sep/21
mathdanisur ser, are you studying?
mathdanisurser,areyoustudying?
Commented by mathdanisur last updated on 02/Sep/21
Yes Ser, I will finish the highest level
YesSer,Iwillfinishthehighestlevel
Commented by Rasheed.Sindhi last updated on 03/Sep/21
Ser,Why  don′t you try to solve  any question in this forum?(Although  you have given answers to some  questions but not complete solutions?)
Ser,Whydontyoutrytosolveanyquestioninthisforum?(Althoughyouhavegivenanswerstosomequestionsbutnotcompletesolutions?)
Commented by mathdanisur last updated on 03/Sep/21
I′ve solved, well, I know the solution  to most of the questions I sak, I just  want different solutions, I′m learning,  it′s a beautiful place, there are educated  people (like you) and I like your solutions,  thank you very much for your solutions...
Ivesolved,well,IknowthesolutiontomostofthequestionsIsak,Ijustwantdifferentsolutions,Imlearning,itsabeautifulplace,thereareeducatedpeople(likeyou)andIlikeyoursolutions,thankyouverymuchforyoursolutions
Commented by Rasheed.Sindhi last updated on 03/Sep/21
^• Th∝nk You very much!  ^• Your one solution seems incorrect:     (3,42,12).Pl correct it.  ^• I wish you share your solution for  this question because my solutions  are not fine enough.   ^• Others also want variety in solutions   so if you know how to solve some   questions pl share their  solutions.(Particularly solution for  this question.)
ThnkYouverymuch!Youronesolutionseemsincorrect:(3,42,12).Plcorrectit.Iwishyoushareyoursolutionforthisquestionbecausemysolutionsarenotfineenough.Othersalsowantvarietyinsolutionssoifyouknowhowtosolvesomequestionsplsharetheirsolutions.(Particularlysolutionforthisquestion.)
Commented by mathdanisur last updated on 03/Sep/21
Good Ser, thank you, sorry (3,12,12)
GoodSer,thankyou,sorry(3,12,12)
Commented by peter frank last updated on 03/Sep/21
your selfish if you have soln then  you dont what to share it this  not good
yourselfishifyouhavesolnthenyoudontwhattoshareitthisnotgood
Answered by Rasheed.Sindhi last updated on 01/Sep/21
(1/a) + (1/b) + (1/c) = (1/2) _((i)) ; a,b,c∈Z^+ ;(a,b,c)=?  (1/a) + (1/b)=(1/2)−(1/c)  (1/a) + (1/b)>0⇒(1/2)−(1/c)>0⇒c≠1,2  ∵ (i) is symmetric in a,b,c  ∴  a,b,c≠1,2 i-e a,b,c>2  Now,   (i)⇒2(ab+bc+ca)=abc  ⇒At least one of a,b,c is even  Let a=2k     2(2bk+bc+2ck)=2kbc     2bk+bc+2ck=kbc      2k(b+c)=bc(k−1)  ⇒At least one of b,c,(k−1) is even.  If(1) (k−1) ∈ E^+ ⇒k∈O^+ ⇒ a is a  singly even number in        2(ab+bc+ca)=abc     .......  If(2) b is even. Say b=2m  2k(b+c)=bc(k−1)  2k(2m+c)=2mc(k−1)  k(2m+c)=mc(k−1)  k∣k−1⇒k=2⇒a=2k=4    ⇒       ........             ........
1a+1b+1c=12(i);a,b,cZ+;(a,b,c)=?1a+1b=121c1a+1b>0121c>0c1,2(i)issymmetricina,b,ca,b,c1,2iea,b,c>2Now,(i)2(ab+bc+ca)=abcAtleastoneofa,b,cisevenLeta=2k2(2bk+bc+2ck)=2kbc2bk+bc+2ck=kbc2k(b+c)=bc(k1)Atleastoneofb,c,(k1)iseven.If(1)(k1)E+kO+aisasinglyevennumberin2(ab+bc+ca)=abc.If(2)biseven.Sayb=2m2k(b+c)=bc(k1)2k(2m+c)=2mc(k1)k(2m+c)=mc(k1)kk1k=2a=2k=4....
Commented by mathdanisur last updated on 02/Sep/21
Nice Ser thank you
NiceSerthankyou
Answered by Rasheed.Sindhi last updated on 03/Sep/21
(1/a) + (1/b) + (1/c) = (1/2).............(★)  (1/a) + (1/b)=(1/2)−(1/c)  ∵(1/a) + (1/b)>0⇒(1/2)−(1/c)>0⇒c>2  ∵ The equation is symmetric in  a,b,c⇒a,b,c>2  (★)⇒2(ab+bc+ca)=abc  ⇒At least one of a,b,c is even.  C1:only one of a,b,c is even:  (1/(2l)) + (1/(2m+1)) + (1/(2n+1)) = (1/2)  ▶2^× {(2l)(2m+1)+(2m+1)(2n+1)+(2n+1)(2l)}                                    =2^(×) l(2m+1)(2n+1)  ▶(2l)(2m+1)+(2m+1)(2n+1)+(2n+1)(2l)                                    =l(2m+1)(2n+1)  ▶4lm+2l+4mn+2m+2n+1+4nl+2l                                  =4lmn+2lm+2ln+l  ▶4lm+4mn+4ln+4l+2m+2n+1                         −4lmn−2lm−2ln−l=0  ▶2lm+4mn+2ln+2m+2n+3l+1=4lmn  ▶2(lm+2mn+ln+m+n)+(3l+1)=4lmn  ⇒3l+1 is even⇒l is odd  Let l=2k+1  ▶2{(2k+1)m+2mn+(2k+1)n+m+n}+(3(2k+1)+1)=4(2k+1)mn  ▶2{2km+2mn+2kn+2n+2m}+6k+4=4(2k+1)mn  ▶4^(×) ({2km+2mn+2kn+2n+2m}+3k+2)=4^(×) (2k+1)mn  ▶2km+mn+2kn+2n+2m+2+3k=2kmn  ▶2(km+kn+n+m+1)+3k+mn=2kmn  ⇒3k+mn is even.  ⇒ { ((k,m & n are odd)),((k is even & (m or n is even))) :}  Continue  C1:only two of a,b,c is even:  (1/(2l))+(1/(2m))+(1/(2n+1))=(1/2)  ((m(2n+1)+l(2n+1)+lm)/(2lm(2n+1)))=(1/2)  ((m(2n+1)+l(2n+1)+lm)/(lm(2n+1)))=1  (1/l)+(1/m)+(1/(2n+1))=1  C1:All of a,b,c are even:  (1/(2l))+(1/(2m))+(1/(2n))=(1/2)  ((lm+mn+nl)/(2lmn))=(1/2)  lm+mn+nl=lmn  l∣mn ∧ m∣nl ∧ n∣lm    (1/l)+(1/m)+(1/n)=1
1a+1b+1c=12.()1a+1b=121c1a+1b>0121c>0c>2Theequationissymmetricina,b,ca,b,c>2()2(ab+bc+ca)=abcAtleastoneofa,b,ciseven.C1:onlyoneofa,b,ciseven:12l+12m+1+12n+1=122×{(2l)(2m+1)+(2m+1)(2n+1)+(2n+1)(2l)}=2×l(2m+1)(2n+1)(2l)(2m+1)+(2m+1)(2n+1)+(2n+1)(2l)=l(2m+1)(2n+1)4lm+2l+4mn+2m+2n+1+4nl+2l=4lmn+2lm+2ln+l4lm+4mn+4ln+4l+2m+2n+14lmn2lm2lnl=02lm+4mn+2ln+2m+2n+3l+1=4lmn2(lm+2mn+ln+m+n)+(3l+1)=4lmn3l+1isevenlisoddLetl=2k+12{(2k+1)m+2mn+(2k+1)n+m+n}+(3(2k+1)+1)=4(2k+1)mn2{2km+2mn+2kn+2n+2m}+6k+4=4(2k+1)mn4×({2km+2mn+2kn+2n+2m}+3k+2)=4×(2k+1)mn2km+mn+2kn+2n+2m+2+3k=2kmn2(km+kn+n+m+1)+3k+mn=2kmn3k+mniseven.{k,m&nareoddkiseven&(morniseven)ContinueC1:onlytwoofa,b,ciseven:12l+12m+12n+1=12m(2n+1)+l(2n+1)+lm2lm(2n+1)=12m(2n+1)+l(2n+1)+lmlm(2n+1)=11l+1m+12n+1=1C1:Allofa,b,careeven:12l+12m+12n=12lm+mn+nl2lmn=12lm+mn+nl=lmnlmnmnlnlm1l+1m+1n=1

Leave a Reply

Your email address will not be published. Required fields are marked *