Menu Close

Determine-if-the-series-converges-or-diverges-i-n-2-1-n-2-1-ii-n-1-1-3-n-1-




Question Number 52349 by Tawa1 last updated on 06/Jan/19
Determine if the series converges or diverges.     (i)    Σ_(n = 2) ^∞   (1/(n^2  − 1))       (ii)    Σ_(n = 1) ^∞   (1/3^(n − 1) )
Determineiftheseriesconvergesordiverges.(i)n=21n21(ii)n=113n1
Commented by Abdo msup. last updated on 07/Jan/19
1) let S_n =Σ_(k=2) ^n  (1/(k^2 −1)) ⇒S_n =(1/2)Σ_(k=2) ^n ((1/(k−1))−(1/(k+1)))  =(1/2)Σ_(k=2) ^n (1/(k−1)) −(1/2)Σ_(k=2) ^n  (1/(k+1)) but  Σ_(k=2) ^n  (1/(k−1)) =Σ_(k=1) ^(n−1)  (1/k)  Σ_(k=2) ^n   (1/(k+1)) =Σ_(k=3) ^(n+1)  (1/k) =Σ_(k=1) ^(n−1) (1/k) −(3/2) +(1/n) +(1/(n+1))  ⇒S_n =(1/2){Σ_(k=1) ^(n−1)  (1/k) −Σ_(k=1) ^(n−1)  (1/k) +(3/2)−(1/n)−(1/(n+1))}  =(3/4) −(1/(2n)) −(1/(3n+2)) ⇒lim_(n→+∞)  S_n =(3/4) .
1)letSn=k=2n1k21Sn=12k=2n(1k11k+1)=12k=2n1k112k=2n1k+1butk=2n1k1=k=1n11kk=2n1k+1=k=3n+11k=k=1n11k32+1n+1n+1Sn=12{k=1n11kk=1n11k+321n1n+1}=3412n13n+2limn+Sn=34.
Commented by Abdo msup. last updated on 07/Jan/19
ii)let S_n = Σ_(k=1) ^n  (1/3^(k−1) ) =Σ_(k=0) ^(n−1)  ((1/3))^k   =((1−((1/3))^n )/(1−(1/3)))   =(3/2){1−(1/3^n )} ⇒lim_(n→+∞)  S_n =(3/2)
ii)letSn=k=1n13k1=k=0n1(13)k=1(13)n113=32{113n}limn+Sn=32
Commented by Tawa1 last updated on 07/Jan/19
God bless you sir
Godblessyousir
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jan/19
ii)S_n =(1/3^0 )+(1/3)+(1/3^2 )+...+(1/3^(n−1) )  S_n =((1(1−(1/3^n )))/(1−(1/3)))=((1−(1/3^n ))/(2/3))  S=lim_(n→∞) ((1−(1/3^n ))/(2/3))=((1−0)/(2/3))=(3/2)  so converge...
ii)Sn=130+13+132++13n1Sn=1(113n)113=113n23S=limn113n23=1023=32soconverge
Commented by Tawa1 last updated on 06/Jan/19
God bless you sir
Godblessyousir
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jan/19
1)T_n =(1/2)[(((n+1)−(n−1))/((n+1)(n−1)))]  T_n =(1/2)[(1/(n−1))−(1/(n+1))]  T_2 =(1/2)[(1/1)−(1/3)]  T_3 =(1/2)[(1/2)−(1/4)]  T_4 =(1/2)[(1/3)−(1/5)]  T_5 =(1/2)[(1/4)−(1/6)]  ...  ....  now look when we add T_2 +T_3 +T_4 +...  all numer cancelled except (1/1) and(1/2)  so answdr is=(1/2)[1+(1/2)]=(3/4) so converge...
1)Tn=12[(n+1)(n1)(n+1)(n1)]Tn=12[1n11n+1]T2=12[1113]T3=12[1214]T4=12[1315]T5=12[1416].nowlookwhenweaddT2+T3+T4+allnumercancelledexcept11and12soanswdris=12[1+12]=34soconverge
Commented by Tawa1 last updated on 06/Jan/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *