Menu Close

Determine-in-simplest-form-the-smallest-of-the-three-numbers-x-y-and-z-which-satisfy-the-system-log-9-x-log-9-y-log-3-z-2-log-16-x-log-4-y-log-16-z-1-log-5-x-lo




Question Number 115859 by bemath last updated on 29/Sep/20
Determine, in simplest form the  smallest of the three numbers x,  y and z which satisfy the system   { ((log _9 (x)+log _9 (y)+log _3 (z)=2)),((log _(16) (x)+log _4 (y)+log _(16) (z)=1)),((log _5 (x)+log _(25) (y)+log _(25) (z)=0)) :}
Determine,insimplestformthesmallestofthethreenumbersx,yandzwhichsatisfythesystem{log9(x)+log9(y)+log3(z)=2log16(x)+log4(y)+log16(z)=1log5(x)+log25(y)+log25(z)=0
Answered by bobhans last updated on 29/Sep/20
→ { ((log _9 (xyz^2 )=2→xyz^2 =81)),((log _(16) (xy^2 z)=1→xy^2 z=16)),((log _(25) (x^2 yz)=0→x^2 yz=1)) :}  ⇔ (xyz)^4  = 81×16×1=(6)^4   ⇒ xyz = 6  { ((z=((81)/6) = ((27)/2))),((y=((16)/6)=(8/3))),((x=(1/6))) :}
{log9(xyz2)=2xyz2=81log16(xy2z)=1xy2z=16log25(x2yz)=0x2yz=1(xyz)4=81×16×1=(6)4xyz=6{z=816=272y=166=83x=16
Answered by floor(10²Eta[1]) last updated on 29/Sep/20
(I)((log_3 (x))/2)+((log_3 (y))/2)+log_3 (z)=2  log_3 (x)+log_3 (y)+2log_3 (z)=4  log_3 (xyz^2 )=4  xyz^2 =81  (II)log_4 (x)+2log_4 (y)+log_4 (z)=2  log_4 (xy^2 z)=2  xy^2 z=16  (III)2log_5 (x)+log_5 (y)+log_5 (z)=0  log_5 (x^2 yz)=0  x^2 yz=1   { ((xyz^2 =81)),((xy^2 z=16)),((x^2 yz=1)) :}  xyz=((81)/z)  ((81y)/z)=16⇒16z=81y⇒16x=y  ((81x)/z)=1⇒z=81x  x.16x.81x=((81)/(81x))⇒x^4 =(1/6^4 )⇒x=(1/6)  y=(8/3)  z=((27)/2)
(I)log3(x)2+log3(y)2+log3(z)=2log3(x)+log3(y)+2log3(z)=4log3(xyz2)=4xyz2=81(II)log4(x)+2log4(y)+log4(z)=2log4(xy2z)=2xy2z=16(III)2log5(x)+log5(y)+log5(z)=0log5(x2yz)=0x2yz=1{xyz2=81xy2z=16x2yz=1xyz=81z81yz=1616z=81y16x=y81xz=1z=81xx.16x.81x=8181xx4=164x=16y=83z=272

Leave a Reply

Your email address will not be published. Required fields are marked *