Menu Close

Determine-in-simplest-form-the-smallest-of-the-three-numbers-x-y-and-z-which-satisfy-the-system-log-9-x-log-9-y-log-3-z-2-log-16-x-log-4-y-log-16-z-1-log-5-x-lo




Question Number 115859 by bemath last updated on 29/Sep/20
Determine, in simplest form the  smallest of the three numbers x,  y and z which satisfy the system   { ((log _9 (x)+log _9 (y)+log _3 (z)=2)),((log _(16) (x)+log _4 (y)+log _(16) (z)=1)),((log _5 (x)+log _(25) (y)+log _(25) (z)=0)) :}
$${Determine},\:{in}\:{simplest}\:{form}\:{the} \\ $$$${smallest}\:{of}\:{the}\:{three}\:{numbers}\:{x}, \\ $$$${y}\:{and}\:{z}\:{which}\:{satisfy}\:{the}\:{system} \\ $$$$\begin{cases}{\mathrm{log}\:_{\mathrm{9}} \left({x}\right)+\mathrm{log}\:_{\mathrm{9}} \left({y}\right)+\mathrm{log}\:_{\mathrm{3}} \left({z}\right)=\mathrm{2}}\\{\mathrm{log}\:_{\mathrm{16}} \left({x}\right)+\mathrm{log}\:_{\mathrm{4}} \left({y}\right)+\mathrm{log}\:_{\mathrm{16}} \left({z}\right)=\mathrm{1}}\\{\mathrm{log}\:_{\mathrm{5}} \left({x}\right)+\mathrm{log}\:_{\mathrm{25}} \left({y}\right)+\mathrm{log}\:_{\mathrm{25}} \left({z}\right)=\mathrm{0}}\end{cases} \\ $$
Answered by bobhans last updated on 29/Sep/20
→ { ((log _9 (xyz^2 )=2→xyz^2 =81)),((log _(16) (xy^2 z)=1→xy^2 z=16)),((log _(25) (x^2 yz)=0→x^2 yz=1)) :}  ⇔ (xyz)^4  = 81×16×1=(6)^4   ⇒ xyz = 6  { ((z=((81)/6) = ((27)/2))),((y=((16)/6)=(8/3))),((x=(1/6))) :}
$$\rightarrow\begin{cases}{\mathrm{log}\:_{\mathrm{9}} \left({xyz}^{\mathrm{2}} \right)=\mathrm{2}\rightarrow{xyz}^{\mathrm{2}} =\mathrm{81}}\\{\mathrm{log}\:_{\mathrm{16}} \left({xy}^{\mathrm{2}} {z}\right)=\mathrm{1}\rightarrow{xy}^{\mathrm{2}} {z}=\mathrm{16}}\\{\mathrm{log}\:_{\mathrm{25}} \left({x}^{\mathrm{2}} {yz}\right)=\mathrm{0}\rightarrow{x}^{\mathrm{2}} {yz}=\mathrm{1}}\end{cases} \\ $$$$\Leftrightarrow\:\left({xyz}\right)^{\mathrm{4}} \:=\:\mathrm{81}×\mathrm{16}×\mathrm{1}=\left(\mathrm{6}\right)^{\mathrm{4}} \\ $$$$\Rightarrow\:{xyz}\:=\:\mathrm{6}\:\begin{cases}{{z}=\frac{\mathrm{81}}{\mathrm{6}}\:=\:\frac{\mathrm{27}}{\mathrm{2}}}\\{{y}=\frac{\mathrm{16}}{\mathrm{6}}=\frac{\mathrm{8}}{\mathrm{3}}}\\{{x}=\frac{\mathrm{1}}{\mathrm{6}}}\end{cases} \\ $$
Answered by floor(10²Eta[1]) last updated on 29/Sep/20
(I)((log_3 (x))/2)+((log_3 (y))/2)+log_3 (z)=2  log_3 (x)+log_3 (y)+2log_3 (z)=4  log_3 (xyz^2 )=4  xyz^2 =81  (II)log_4 (x)+2log_4 (y)+log_4 (z)=2  log_4 (xy^2 z)=2  xy^2 z=16  (III)2log_5 (x)+log_5 (y)+log_5 (z)=0  log_5 (x^2 yz)=0  x^2 yz=1   { ((xyz^2 =81)),((xy^2 z=16)),((x^2 yz=1)) :}  xyz=((81)/z)  ((81y)/z)=16⇒16z=81y⇒16x=y  ((81x)/z)=1⇒z=81x  x.16x.81x=((81)/(81x))⇒x^4 =(1/6^4 )⇒x=(1/6)  y=(8/3)  z=((27)/2)
$$\left(\mathrm{I}\right)\frac{\mathrm{log}_{\mathrm{3}} \left(\mathrm{x}\right)}{\mathrm{2}}+\frac{\mathrm{log}_{\mathrm{3}} \left(\mathrm{y}\right)}{\mathrm{2}}+\mathrm{log}_{\mathrm{3}} \left(\mathrm{z}\right)=\mathrm{2} \\ $$$$\mathrm{log}_{\mathrm{3}} \left(\mathrm{x}\right)+\mathrm{log}_{\mathrm{3}} \left(\mathrm{y}\right)+\mathrm{2log}_{\mathrm{3}} \left(\mathrm{z}\right)=\mathrm{4} \\ $$$$\mathrm{log}_{\mathrm{3}} \left(\mathrm{xyz}^{\mathrm{2}} \right)=\mathrm{4} \\ $$$$\mathrm{xyz}^{\mathrm{2}} =\mathrm{81} \\ $$$$\left(\mathrm{II}\right)\mathrm{log}_{\mathrm{4}} \left(\mathrm{x}\right)+\mathrm{2log}_{\mathrm{4}} \left(\mathrm{y}\right)+\mathrm{log}_{\mathrm{4}} \left(\mathrm{z}\right)=\mathrm{2} \\ $$$$\mathrm{log}_{\mathrm{4}} \left(\mathrm{xy}^{\mathrm{2}} \mathrm{z}\right)=\mathrm{2} \\ $$$$\mathrm{xy}^{\mathrm{2}} \mathrm{z}=\mathrm{16} \\ $$$$\left(\mathrm{III}\right)\mathrm{2log}_{\mathrm{5}} \left(\mathrm{x}\right)+\mathrm{log}_{\mathrm{5}} \left(\mathrm{y}\right)+\mathrm{log}_{\mathrm{5}} \left(\mathrm{z}\right)=\mathrm{0} \\ $$$$\mathrm{log}_{\mathrm{5}} \left(\mathrm{x}^{\mathrm{2}} \mathrm{yz}\right)=\mathrm{0} \\ $$$$\mathrm{x}^{\mathrm{2}} \mathrm{yz}=\mathrm{1} \\ $$$$\begin{cases}{\mathrm{xyz}^{\mathrm{2}} =\mathrm{81}}\\{\mathrm{xy}^{\mathrm{2}} \mathrm{z}=\mathrm{16}}\\{\mathrm{x}^{\mathrm{2}} \mathrm{yz}=\mathrm{1}}\end{cases} \\ $$$$\mathrm{xyz}=\frac{\mathrm{81}}{\mathrm{z}} \\ $$$$\frac{\mathrm{81y}}{\mathrm{z}}=\mathrm{16}\Rightarrow\mathrm{16z}=\mathrm{81y}\Rightarrow\mathrm{16x}=\mathrm{y} \\ $$$$\frac{\mathrm{81x}}{\mathrm{z}}=\mathrm{1}\Rightarrow\mathrm{z}=\mathrm{81x} \\ $$$$\mathrm{x}.\mathrm{16x}.\mathrm{81x}=\frac{\mathrm{81}}{\mathrm{81x}}\Rightarrow\mathrm{x}^{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{4}} }\Rightarrow\mathrm{x}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\mathrm{y}=\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$\mathrm{z}=\frac{\mathrm{27}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *