determine-L-1-cosx-x-2- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 99460 by mathmax by abdo last updated on 21/Jun/20 determineL(1−cosxx2) Answered by mathmax by abdo last updated on 23/Jun/20 L(1−cosxx2)=∫0∞1−costt2e−xtdt=f(x)⇒f′(x)=−∫0∞(1−cost)e−xttdt⇒f(2)(x)=∫0∞(1−cost)e−xtdt=∫0∞e−xtdt−∫0∞e−xtcostdtbut∫0∞e−xtdt=[−1xe−xt]0∞=1xand∫0∞e−xtcostdt=Re(∫0∞e−xt+itdt)=Re(∫0∞e(−x+i)tdt)∫0∞e(−x+i)tdt=[1−x+ie(−x+i)t]0∞=−1−x+i=1x−i=x+ix2+1⇒Re(…)=xx2+1⇒f(2)(x)=1x−xx2+1⇒f′(x)=lnx−12ln(x2+1)+k⇒f(x)=∫ln(x)dx−12∫ln(x2+1)dx+kx+cwehave∫ln(x)dx=xln(x)−x∫ln(x2+1)dx=xln(x2+1)−∫x×2x1+x2dx=xln(x2+1)−2∫x2+1−11+x2dx=xln(1+x2)−2x+2arctanx⇒f(x)=xlnx−x−x2ln(1+x2)+x−arctanx+kx+cc=limx→0f(x)=∫0∞1−costt2=2∫0∞sin2tt2dt=2{[−sin2tt]0∞+∫0∞2sintcosttdt}=2∫0∞sin(2t)tdt=2t=u2∫0∞sinuu2×du2=2∫0∞sinuudu=π⇒c=πresttofindk….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-g-x-xcosx-odd-and-2pi-periodic-developp-g-at-fourier-serie-Next Next post: Question-33926 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.