Menu Close

determine-L-1-cosx-x-2-




Question Number 99460 by mathmax by abdo last updated on 21/Jun/20
determine L(((1−cosx)/x^2 ))
determineL(1cosxx2)
Answered by mathmax by abdo last updated on 23/Jun/20
L(((1−cosx)/x^2 )) =∫_0 ^∞  ((1−cost)/t^2 )e^(−xt)  dt  =f(x) ⇒  f^′ (x) =−∫_0 ^∞  (((1−cost)e^(−xt) )/t)dt ⇒f^((2)) (x) =∫_0 ^∞  (1−cost)e^(−xt)  dt  =∫_0 ^∞  e^(−xt)  dt −∫_0 ^∞  e^(−xt)  cost dt  but ∫_0 ^∞  e^(−xt)  dt =[−(1/x)e^(−xt) ]_0 ^∞   =(1/x)  and ∫_0 ^∞  e^(−xt)  cost dt =Re(∫_0 ^∞  e^(−xt+it) dt) =Re(∫_0 ^∞  e^((−x+i)t) dt)  ∫_0 ^∞  e^((−x+i)t)  dt =[(1/(−x+i))e^((−x+i)t) ]_0 ^∞  =−(1/(−x+i)) =(1/(x−i)) =((x+i)/(x^2  +1)) ⇒  Re(...) =(x/(x^2  +1)) ⇒f^((2)) (x) =(1/x)−(x/(x^2  +1)) ⇒  f^′ (x) =lnx −(1/2)ln(x^2  +1) +k ⇒  f(x) =∫ ln(x)dx −(1/2)∫ ln(x^2 +1)dx+kx +c  we have  ∫ ln(x)dx =xln(x)−x  ∫ ln(x^2 +1)dx =xln(x^2 +1)−∫ x×((2x)/(1+x^2 ))dx =xln(x^2  +1)−2 ∫ ((x^2 +1−1)/(1+x^2 ))dx  =xln(1+x^2 )−2x +2arctanx ⇒  f(x) =xlnx−x−(x/2)ln(1+x^2 )+x −arctanx  +kx +c    c =lim_(x→0) f(x) =∫_0 ^∞  ((1−cost)/t^2 ) =2 ∫_0 ^∞  ((sin^2 t)/t^2 )dt  =2{  [−((sin^2 t)/t)]_0 ^∞ +∫_0 ^∞  ((2sintcost)/t) dt} =2 ∫_0 ^∞  ((sin(2t))/t) dt =_(2t=u)  2∫_0 ^∞  ((sinu)/(u/2))×(du/2)  =2∫_0 ^∞  ((sinu)/u)du =π ⇒c =π  rest to find k ....be continued....
L(1cosxx2)=01costt2extdt=f(x)f(x)=0(1cost)exttdtf(2)(x)=0(1cost)extdt=0extdt0extcostdtbut0extdt=[1xext]0=1xand0extcostdt=Re(0ext+itdt)=Re(0e(x+i)tdt)0e(x+i)tdt=[1x+ie(x+i)t]0=1x+i=1xi=x+ix2+1Re()=xx2+1f(2)(x)=1xxx2+1f(x)=lnx12ln(x2+1)+kf(x)=ln(x)dx12ln(x2+1)dx+kx+cwehaveln(x)dx=xln(x)xln(x2+1)dx=xln(x2+1)x×2x1+x2dx=xln(x2+1)2x2+111+x2dx=xln(1+x2)2x+2arctanxf(x)=xlnxxx2ln(1+x2)+xarctanx+kx+cc=limx0f(x)=01costt2=20sin2tt2dt=2{[sin2tt]0+02sintcosttdt}=20sin(2t)tdt=2t=u20sinuu2×du2=20sinuudu=πc=πresttofindk.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *