Menu Close

determine-L-e-x-2-x-with-L-laplace-transform-




Question Number 96658 by mathmax by abdo last updated on 03/Jun/20
determine L(e^(−x^2 −x) )   with L laplace transform
determineL(ex2x)withLlaplacetransform
Answered by mathmax by abdo last updated on 04/Jun/20
L(e^(−x^2 −x) ) =∫_0 ^∞  e^(−t^2 −t)  e^(−xt)  dt =∫_0 ^∞  e^(−t^2 −(x+1)t)  dt  =∫_0 ^∞  e^(−(t^2  +2t×((x+1)/2) +(((x+1)^2 )/4)−(((x+1)^2 )/4)))  =e^(((x+1)^2 )/4)  ∫_0 ^∞   e^(−{t+((x+1)/2)}^2 ) dt  =_(t+((x+1)/2)=u)   e^(((x+1)^2 )/4)  ∫_((x+1)/2) ^∞  e^(−u^2 ) du =e^(((x+1)^2 )/4)  { ∫_((x+1)/2) ^0  e^(−u^2 ) du +∫_0 ^∞  e^(−u^2 ) du}  =e^(((x+1)^2 )/4) {(π/2)−∫_0 ^((x+1)/2)  e^(−u^2 ) du} ⇒  L(e^(−x^2 −x) ) =(π/2)e^(((x+1)^2 )/4)  −e^(((x+1)^2 )/4)  ∫_0 ^((x+1)/2)  e^(−u^2 ) du
L(ex2x)=0et2textdt=0et2(x+1)tdt=0e(t2+2t×x+12+(x+1)24(x+1)24)=e(x+1)240e{t+x+12}2dt=t+x+12=ue(x+1)24x+12eu2du=e(x+1)24{x+120eu2du+0eu2du}=e(x+1)24{π20x+12eu2du}L(ex2x)=π2e(x+1)24e(x+1)240x+12eu2du
Commented by mathmax by abdo last updated on 04/Jun/20
sorry L(e^(−x^2 −x) ) = e^(((x+1)^2 )/2) {((√π)/2) −∫_0 ^((x+1)/2)  e^(−u^2 ) du} ⇒  L(e^(−x^2 −x) ) =((√π)/2) e^(((x+1)^2 )/4)  −e^(((x+1)^2 )/4)  ∫_0 ^((x+1)/2)  e^(−u^2 )  du
sorryL(ex2x)=e(x+1)22{π20x+12eu2du}L(ex2x)=π2e(x+1)24e(x+1)240x+12eu2du

Leave a Reply

Your email address will not be published. Required fields are marked *