Menu Close

determine-L-f-3-x-with-L-is-laplace-transform-




Question Number 95838 by mathmax by abdo last updated on 28/May/20
determine L(f^((3)) (x)  with L is laplace transform
$$\mathrm{determine}\:\mathrm{L}\left(\mathrm{f}^{\left(\mathrm{3}\right)} \left(\mathrm{x}\right)\:\:\mathrm{with}\:\mathrm{L}\:\mathrm{is}\:\mathrm{laplace}\:\mathrm{transform}\right. \\ $$
Answered by mathmax by abdo last updated on 28/May/20
L(f^((3)) (x)) =L((f^′ )^(′′) ) =x^2 L(f^′ )−x f^′ (0)−f^(′′) (0)  =x^2 ( xL(f)−f(0))−xf^′ (0)−f^(′′) (0)  =x^3  L(f)−x^2 f(0)−xf^′ (0)−f^(′′) (0)
$$\mathrm{L}\left(\mathrm{f}^{\left(\mathrm{3}\right)} \left(\mathrm{x}\right)\right)\:=\mathrm{L}\left(\left(\mathrm{f}^{'} \right)^{''} \right)\:=\mathrm{x}^{\mathrm{2}} \mathrm{L}\left(\mathrm{f}^{'} \right)−\mathrm{x}\:\mathrm{f}^{'} \left(\mathrm{0}\right)−\mathrm{f}^{''} \left(\mathrm{0}\right) \\ $$$$=\mathrm{x}^{\mathrm{2}} \left(\:\mathrm{xL}\left(\mathrm{f}\right)−\mathrm{f}\left(\mathrm{0}\right)\right)−\mathrm{xf}^{'} \left(\mathrm{0}\right)−\mathrm{f}^{''} \left(\mathrm{0}\right) \\ $$$$=\mathrm{x}^{\mathrm{3}} \:\mathrm{L}\left(\mathrm{f}\right)−\mathrm{x}^{\mathrm{2}} \mathrm{f}\left(\mathrm{0}\right)−\mathrm{xf}^{'} \left(\mathrm{0}\right)−\mathrm{f}^{''} \left(\mathrm{0}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *