Determine-minimum-value-of-sec-4-tan-2-sec-4-tan-2-over-all-kpi-2-and-k-Z- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 119372 by bobhans last updated on 24/Oct/20 Determineminimumvalueofsec4αtan2β+sec4βtan2α,overallα,β≠kπ2andk∈Z Answered by 1549442205PVT last updated on 24/Oct/20 S=sec4αtan2β+sec4βtan2α=1cos4α.cos2βsin2β+1cos4β.cos2αsin2α=(1+tan2α)2tan2β+(1+tan2β)2tan2αApplyingCauchy−ShwardzwehaveS⩾(2+tan2α+tan2β)2tan2α+tan2β=4+(tan2α+tan2β)2+4(tan2α+tan2β)tan2α+tan2β=4+[tan2α+tan2β+4tan2α+tan2β]=4+(tan2α+tan2β−2tan2α+tan2β)2+4⩾8.Theequalityocurrsifandonlyif{tan2α+tan2β=2tan2α+tan2β(1)1+tan2αtan2β=1+tan2βtan2α(2)(2)⇒tan4α+tan2α=tan4β+tan2β⇔(tan2α−tan2β)(tan2α+tan2β+1)=0(∗)(1)⇒tan2α+tan2β=2.Replaceinto(∗)wegettan2α=tan2β=1Thus,S=sec4αtan2β+sec4βtan2αhassmallestvalueequalto8whentan2α=tan2β=1 Answered by bemath last updated on 24/Oct/20 set→{a=tan2αb=tan2βitsufficestodeterminetheminimumvalueof(a+1)2b+(b+1)2awitha,b⩾0.wehave(a+1)2b+(b+1)2a=a2+2a+1b+b2+2b+1a=(a2b+1b+b2a+1a)+2(ab+ba)⩾4a2b.1b.b2a.1a4+4ab.ba=8 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-2-x-2-100-x-101x-Next Next post: Question-53839 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.