Menu Close

Determine-minimum-value-of-sec-4-tan-2-sec-4-tan-2-over-all-kpi-2-and-k-Z-




Question Number 119372 by bobhans last updated on 24/Oct/20
Determine minimum value of    ((sec^4 α)/(tan^2 β)) + ((sec^4 β)/(tan^2 α)) , over all α,β ≠ ((kπ)/2)  and k∈Z
Determineminimumvalueofsec4αtan2β+sec4βtan2α,overallα,βkπ2andkZ
Answered by 1549442205PVT last updated on 24/Oct/20
S= ((sec^4 α)/(tan^2 β)) + ((sec^4 β)/(tan^2 α)) = (1/(cos^4 α)).((cos^2 β)/(sin^2 β))+(1/(cos^4 β)).((cos^2 α)/(sin^2 α))  =(((1+tan^2 α)^2 )/(tan^2 β))+(((1+tan^2 β)^2 )/(tan^2 α))  Applying Cauchy−Shwardz we have  S≥(((2+tan^2 α+tan^2 β)^2 )/(tan^2 α+tan^2 β))  =((4+(tan^2 α+tan^2 β)^2 +4(tan^2 α+tan^2 β))/(tan^2 α+tan^2 β))  =4+[tan^2 α+tan^2 β+(4/(tan^2 α+tan^2 β))]  =4+((√(tan^2 α+tan^2 β))−(2/( (√(tan^2 α+tan^2 β)))))^2   +4≥8.The equality ocurrs if and only  if  { (((√(tan^2 α+tan^2 β))=(2/( (√(tan^2 α+tan^2 β))))(1))),((((1+tan^2 α)/(tan^2 β))=((1+tan^2 β)/(tan^2 α))(2))) :}  (2)⇒tan^4 α+tan^2 α=tan^4 β+tan^2 β  ⇔(tan^2 α−tan^2 β)(tan^2 α+tan^2 β+1)=0(∗)  (1)⇒tan^2 α+tan^2 β=2.Replace into  (∗) we get tan^2 α=tan^2 β=1  Thus,S= ((sec^4 α)/(tan^2 β)) + ((sec^4 β)/(tan^2 α))  has smallest  value equal to 8 when tan^2 α=tan^2 β=1
S=sec4αtan2β+sec4βtan2α=1cos4α.cos2βsin2β+1cos4β.cos2αsin2α=(1+tan2α)2tan2β+(1+tan2β)2tan2αApplyingCauchyShwardzwehaveS(2+tan2α+tan2β)2tan2α+tan2β=4+(tan2α+tan2β)2+4(tan2α+tan2β)tan2α+tan2β=4+[tan2α+tan2β+4tan2α+tan2β]=4+(tan2α+tan2β2tan2α+tan2β)2+48.Theequalityocurrsifandonlyif{tan2α+tan2β=2tan2α+tan2β(1)1+tan2αtan2β=1+tan2βtan2α(2)(2)tan4α+tan2α=tan4β+tan2β(tan2αtan2β)(tan2α+tan2β+1)=0()(1)tan2α+tan2β=2.Replaceinto()wegettan2α=tan2β=1Thus,S=sec4αtan2β+sec4βtan2αhassmallestvalueequalto8whentan2α=tan2β=1
Answered by bemath last updated on 24/Oct/20
set → { ((a=tan^2 α)),((b=tan^2 β)) :}  it suffices to determine the minimum value of  (((a+1)^2 )/b)+(((b+1)^2 )/a)  with a,b≥0. we have (((a+1)^2 )/b)+(((b+1)^2 )/a)=((a^2 +2a+1)/b)+((b^2 +2b+1)/a)   = ((a^2 /b)+(1/b)+(b^2 /a)+(1/a))+2((a/b)+(b/a))   ≥ 4 (((a^2 /b).(1/b).(b^2 /a).(1/a)))^(1/(4 ))  + 4 (√((a/b).(b/a))) = 8
set{a=tan2αb=tan2βitsufficestodeterminetheminimumvalueof(a+1)2b+(b+1)2awitha,b0.wehave(a+1)2b+(b+1)2a=a2+2a+1b+b2+2b+1a=(a2b+1b+b2a+1a)+2(ab+ba)4a2b.1b.b2a.1a4+4ab.ba=8

Leave a Reply

Your email address will not be published. Required fields are marked *