Menu Close

Determine-number-of-possible-pairs-whose-LCM-is-144-in-case-i-when-a-b-amp-b-a-are-considered-same-ii-when-a-b-amp-b-a-are-considered-different-




Question Number 34358 by Rasheed.Sindhi last updated on 05/May/18
Determine number of possible pairs whose  LCM is 144 in case,  (i)when (a,b) & (b,a) are considered same.  (ii)when(a,b) & (b,a) are considered different.
$$\mathrm{Determine}\:\mathrm{number}\:\mathrm{of}\:\mathrm{possible}\:\mathrm{pairs}\:\mathrm{whose} \\ $$$$\mathrm{LCM}\:\mathrm{is}\:\mathrm{144}\:\mathrm{in}\:\mathrm{case}, \\ $$$$\left(\mathrm{i}\right)\mathrm{when}\:\left(\mathrm{a},\mathrm{b}\right)\:\&\:\left(\mathrm{b},\mathrm{a}\right)\:\mathrm{are}\:\mathrm{considered}\:\mathrm{same}. \\ $$$$\left(\mathrm{ii}\right)\mathrm{when}\left(\mathrm{a},\mathrm{b}\right)\:\&\:\left(\mathrm{b},\mathrm{a}\right)\:\mathrm{are}\:\mathrm{considered}\:\mathrm{different}. \\ $$
Commented by candre last updated on 05/May/18
144=72×2=36×2^2 =18×2^3 =9×2^4 =2^4 ×3^2   S={x∈N;x∣144}  S={1,2,3,4,6,8,9,12,16,18,24,36,48,72,144}  ∣S∣=5×3=15   [(1,3,9),(2,6,(18)),(4,(12),(36)),(8,(24),(72)),((16),(48),(144)) ]
$$\mathrm{144}=\mathrm{72}×\mathrm{2}=\mathrm{36}×\mathrm{2}^{\mathrm{2}} =\mathrm{18}×\mathrm{2}^{\mathrm{3}} =\mathrm{9}×\mathrm{2}^{\mathrm{4}} =\mathrm{2}^{\mathrm{4}} ×\mathrm{3}^{\mathrm{2}} \\ $$$${S}=\left\{{x}\in\mathbb{N};{x}\mid\mathrm{144}\right\} \\ $$$${S}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{6},\mathrm{8},\mathrm{9},\mathrm{12},\mathrm{16},\mathrm{18},\mathrm{24},\mathrm{36},\mathrm{48},\mathrm{72},\mathrm{144}\right\} \\ $$$$\mid{S}\mid=\mathrm{5}×\mathrm{3}=\mathrm{15} \\ $$$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{3}}&{\mathrm{9}}\\{\mathrm{2}}&{\mathrm{6}}&{\mathrm{18}}\\{\mathrm{4}}&{\mathrm{12}}&{\mathrm{36}}\\{\mathrm{8}}&{\mathrm{24}}&{\mathrm{72}}\\{\mathrm{16}}&{\mathrm{48}}&{\mathrm{144}}\end{bmatrix} \\ $$
Answered by MJS last updated on 05/May/18
(1;144)  (2;144)  (3;144)  (4;144)  (6;144)  (8;144)  (9;144) (9;16) (9;48)  (12;144)  (16;144) (16;18) (16;36) (16;72)  (18;144) (18;48)  (24;144)  (36;144) (36;48)  (48;144) (48;72)  (72;144)  (144;144)    (i) 23  (ii) 45
$$\left(\mathrm{1};\mathrm{144}\right) \\ $$$$\left(\mathrm{2};\mathrm{144}\right) \\ $$$$\left(\mathrm{3};\mathrm{144}\right) \\ $$$$\left(\mathrm{4};\mathrm{144}\right) \\ $$$$\left(\mathrm{6};\mathrm{144}\right) \\ $$$$\left(\mathrm{8};\mathrm{144}\right) \\ $$$$\left(\mathrm{9};\mathrm{144}\right)\:\left(\mathrm{9};\mathrm{16}\right)\:\left(\mathrm{9};\mathrm{48}\right) \\ $$$$\left(\mathrm{12};\mathrm{144}\right) \\ $$$$\left(\mathrm{16};\mathrm{144}\right)\:\left(\mathrm{16};\mathrm{18}\right)\:\left(\mathrm{16};\mathrm{36}\right)\:\left(\mathrm{16};\mathrm{72}\right) \\ $$$$\left(\mathrm{18};\mathrm{144}\right)\:\left(\mathrm{18};\mathrm{48}\right) \\ $$$$\left(\mathrm{24};\mathrm{144}\right) \\ $$$$\left(\mathrm{36};\mathrm{144}\right)\:\left(\mathrm{36};\mathrm{48}\right) \\ $$$$\left(\mathrm{48};\mathrm{144}\right)\:\left(\mathrm{48};\mathrm{72}\right) \\ $$$$\left(\mathrm{72};\mathrm{144}\right) \\ $$$$\left(\mathrm{144};\mathrm{144}\right) \\ $$$$ \\ $$$$\left(\mathrm{i}\right)\:\mathrm{23} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{45} \\ $$
Commented by Rasheed.Sindhi last updated on 05/May/18
ŦΉΛПKS Λ LӨŦ SIЯ!

Leave a Reply

Your email address will not be published. Required fields are marked *