Menu Close

Determine-the-amplitudo-the-period-the-phase-shift-and-the-midline-of-the-function-f-x-1-2-sin-1-2-x-pi-2-




Question Number 125993 by bramlexs22 last updated on 16/Dec/20
Determine the amplitudo, the  period , the phase shift and the  midline of the function   f(x) = (1/2)−sin ((1/2)x+(π/2))
$${Determine}\:{the}\:{amplitudo},\:{the} \\ $$$${period}\:,\:{the}\:{phase}\:{shift}\:{and}\:{the} \\ $$$${midline}\:{of}\:{the}\:{function}\: \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{2}}{x}+\frac{\pi}{\mathrm{2}}\right) \\ $$
Answered by liberty last updated on 16/Dec/20
For the function f(x)=Asin (B(x−(C/B)))+D  the amplitude is ∣A∣, the period is ∣((2π)/B)∣ , the  phase shift is (C/B) and the midline is y=D.  consider f(x)=(1/2)−sin ((1/2)x+(π/2)) or   f(x)=−sin ((1/2)(x−(−π)))+(1/2)  gives we  { ((amplitude as ∣−1∣=1)),((the period as ∣((2π)/(1/2))∣ = 4π )),((the phase shift as −π )),((the midline as y = (1/2))) :}
$${For}\:{the}\:{function}\:{f}\left({x}\right)={A}\mathrm{sin}\:\left({B}\left({x}−\frac{{C}}{{B}}\right)\right)+{D} \\ $$$${the}\:{amplitude}\:{is}\:\mid{A}\mid,\:{the}\:{period}\:{is}\:\mid\frac{\mathrm{2}\pi}{{B}}\mid\:,\:{the} \\ $$$${phase}\:{shift}\:{is}\:\frac{{C}}{{B}}\:{and}\:{the}\:{midline}\:{is}\:{y}={D}. \\ $$$${consider}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{2}}{x}+\frac{\pi}{\mathrm{2}}\right)\:{or}\: \\ $$$${f}\left({x}\right)=−\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\left({x}−\left(−\pi\right)\right)\right)+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${gives}\:{we}\:\begin{cases}{{amplitude}\:{as}\:\mid−\mathrm{1}\mid=\mathrm{1}}\\{{the}\:{period}\:{as}\:\mid\frac{\mathrm{2}\pi}{\mathrm{1}/\mathrm{2}}\mid\:=\:\mathrm{4}\pi\:}\\{{the}\:{phase}\:{shift}\:{as}\:−\pi\:}\\{{the}\:{midline}\:{as}\:{y}\:=\:\frac{\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *