Menu Close

determine-the-area-of-the-region-bounded-by-y-2x-6-0-5-and-y-x-1-




Question Number 116738 by Eric002 last updated on 06/Oct/20
determine the area of the region bounded  by y=(2x+6)^(0.5 ) and y=x−1
determinetheareaoftheregionboundedbyy=(2x+6)0.5andy=x1
Commented by bobhans last updated on 06/Oct/20
Answered by 1549442205PVT last updated on 06/Oct/20
Question should be:Calculate the area   of region bounded by curve y=(√(2x+6))  ,the line y=x−1 and the Ox  We find the intersection of line(d):  y=x−1 and the curve C: y=(√(2x+6))  x−1=(√(2x+6))⇔2x+6=x^2 −2x+1(x≥1)  ⇔x^2 −4x−5=0 ⇔(x+1)(x−5)=0  ⇔x=5⇒y=4.⇒C∩d=B(5;4)  C∩Ox=A(−3;0),d∩Ox=C(1;0).Hence  The area of region bounded by C,d   and the asix Ox equal to  S=∫_(−3) ^( 5) (√(2x+6))dx−∫_1 ^( 5) (x−1)dx  Put (√(2x+6))=u⇒2x+6=u^2   ⇒dx=udu ∫(√(2x+6))dx=∫u^2 du=(u^3 /3)  ⇒S=(((2x+6)(√(2x+6)))/3)∣_(−3) ^5 −[(x^2 /2)−x]_1 ^5 =  =((64)/3)−7.5−0.5=((64)/3)−8=((40)/3)  S=((40)/3)
Questionshouldbe:Calculatetheareaofregionboundedbycurvey=2x+6,theliney=x1andtheOxWefindtheintersectionofline(d):y=x1andthecurveC:y=2x+6x1=2x+62x+6=x22x+1(x1)x24x5=0(x+1)(x5)=0x=5y=4.Cd=B(5;4)COx=A(3;0),dOx=C(1;0).HenceTheareaofregionboundedbyC,dandtheasixOxequaltoS=352x+6dx15(x1)dxPut2x+6=u2x+6=u2dx=udu2x+6dx=u2du=u33S=(2x+6)2x+6335[x22x]15==6437.50.5=6438=403S=403

Leave a Reply

Your email address will not be published. Required fields are marked *