Menu Close

Determine-the-cardinality-and-power-set-of-B-a-b-c-d-e-f-g-h-i-




Question Number 159071 by physicstutes last updated on 12/Nov/21
Determine the cardinality and power  set of  B = {{a,b,c},{d,e},{f,g,h,i}
$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{cardinality}\:\mathrm{and}\:\mathrm{power} \\ $$$$\mathrm{set}\:\mathrm{of} \\ $$$${B}\:=\:\left\{\left\{{a},{b},{c}\right\},\left\{{d},{e}\right\},\left\{{f},{g},{h},{i}\right\}\right. \\ $$
Answered by Rasheed.Sindhi last updated on 12/Nov/21
cardinality of B=3, because B  has 3 members:(1) {a,b,c}  (2) {d,e} (3){f,g,h,i}  Let they′re named as X,Y & Z  Power Set of B  P(B)={φ,{X},{Y},{Z},{X,Y}{X,Z}{Y,Z}{X,Y,Z}}
$$\mathrm{cardinality}\:\mathrm{of}\:\mathrm{B}=\mathrm{3},\:\mathrm{because}\:\mathrm{B} \\ $$$$\mathrm{has}\:\mathrm{3}\:\mathrm{members}:\left(\mathrm{1}\right)\:\left\{{a},{b},{c}\right\} \\ $$$$\left(\mathrm{2}\right)\:\left\{{d},{e}\right\}\:\left(\mathrm{3}\right)\left\{{f},{g},{h},{i}\right\} \\ $$$$\mathrm{Let}\:\mathrm{they}'\mathrm{re}\:\mathrm{named}\:\mathrm{as}\:\mathrm{X},\mathrm{Y}\:\&\:\mathrm{Z} \\ $$$$\mathrm{Power}\:\mathrm{Set}\:\mathrm{of}\:\mathrm{B} \\ $$$$\mathrm{P}\left(\mathrm{B}\right)=\left\{\phi,\left\{\mathrm{X}\right\},\left\{\mathrm{Y}\right\},\left\{\mathrm{Z}\right\},\left\{\mathrm{X},\mathrm{Y}\right\}\left\{\mathrm{X},\mathrm{Z}\right\}\left\{\mathrm{Y},\mathrm{Z}\right\}\left\{\mathrm{X},\mathrm{Y},\mathrm{Z}\right\}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *