Menu Close

Determine-the-fourth-roots-of-16-giving-the-results-in-polar-form-and-in-exponential-form-Answers-2-1-j-2-1-j-2-1-j-2-1-j-




Question Number 50806 by Tawa1 last updated on 20/Dec/18
Determine the fourth roots of  − 16 ,  giving the results in polar  form and in exponential form  Answers:     (√2) (1 + j) ,  (√2) (− 1 + j) ,     (√2) (− 1 − j),    (√2)(1 − j)
Determinethefourthrootsof16,givingtheresultsinpolarformandinexponentialformAnswers:2(1+j),2(1+j),2(1j),2(1j)
Answered by mr W last updated on 20/Dec/18
x=r(cos θ+j sin θ)  x^4 =−16  r^4 (cos 4θ+j sin 4θ)=2^4 (−1+0j)  ⇒r=2  cos 4θ=−1  sin 4θ=0  ⇒4θ=π,3π,5π,7π  ⇒θ=(π/4),((3π)/4),((5π)/4),((7π)/4)  x=2(cos (π/4)+j sin (π/4))=(√2)(1+j)  x=2(cos ((3π)/4)+j sin ((3π)/4))=(√2)(−1+j)  x=2(cos ((5π)/4)+j sin ((5π)/4))=(√2)(1−j)  x=2(cos ((7π)/4)+j sin ((7π)/4))=(√2)(−1−j)
x=r(cosθ+jsinθ)x4=16r4(cos4θ+jsin4θ)=24(1+0j)r=2cos4θ=1sin4θ=04θ=π,3π,5π,7πθ=π4,3π4,5π4,7π4x=2(cosπ4+jsinπ4)=2(1+j)x=2(cos3π4+jsin3π4)=2(1+j)x=2(cos5π4+jsin5π4)=2(1j)x=2(cos7π4+jsin7π4)=2(1j)
Commented by Tawa1 last updated on 20/Dec/18
God bless you sir
Godblessyousir
Commented by Tawa1 last updated on 21/Dec/18
Sir, am trying to understand how you got  3π, 5π, 7π ...  I thought the angles should be in the same interval sir.  like in   interval of      ((360)/4)  =  90     since it is 4th roots.  so,  4θ  =  180, 270, 360, 450,  etc ...      Please sir, i want to know why we use   π, 3π, 5π, 7π,   and not the   interval of 4th roots   ((360)/4)  = 90.    God bless you sir
Sir,amtryingtounderstandhowyougot3π,5π,7πIthoughttheanglesshouldbeinthesameintervalsir.likeinintervalof3604=90sinceitis4throots.so,4θ=180,270,360,450,etcPleasesir,iwanttoknowwhyweuseπ,3π,5π,7π,andnottheintervalof4throots3604=90.Godblessyousir
Commented by mr W last updated on 21/Dec/18
0≤θ≤2π  ⇒0≤4θ≤8π  in this range we have following values  for 4θ: π, 3π, 5π, 7π  which fulfill  cos 4θ=−1  sin 4θ=0
0θ2π04θ8πinthisrangewehavefollowingvaluesfor4θ:π,3π,5π,7πwhichfulfillcos4θ=1sin4θ=0
Answered by peter frank last updated on 21/Dec/18
 z^4 =−16(cos π+jsin π)  r=(√(16^2 )) =16  from   z_k =r^(1/n) [cos ((θ+2πk)/n)+jsin ((θ+2πk)/n)]  n=4      θ=π  z_k =2[cos ((π+2πk)/4)+jsin ((π+2πk)/4)]  k=0  z_0 =2(cos (π/4)+jsin (π/4))=(√2) (1+j)  k=1  z_1 =2(cos  ((3π)/4)+jsin ((3π)/4))=-(√2) (1−j)  k=2  z_2 =2(cos  ((5π)/4)+jsin ((5π)/4))=(√2) (-1−j)  k=3  z_3 =2(cos  ((7π)/4)+jsin ((7π)/4))=(√(2 ))(1−j)
z4=16(cosπ+jsinπ)r=162=16fromzk=r1n[cosθ+2πkn+jsinθ+2πkn]n=4θ=πzk=2[cosπ+2πk4+jsinπ+2πk4]k=0z0=2(cosπ4+jsinπ4)=2(1+j)k=1z1=2(cos3π4+jsin3π4)=2(1j)k=2z2=2(cos5π4+jsin5π4)=2(1j)k=3z3=2(cos7π4+jsin7π4)=2(1j)
Commented by Tawa1 last updated on 21/Dec/18
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *