Menu Close

Determine-the-integer-which-can-be-written-N-xyz-7-zyx-11-




Question Number 119440 by mathocean1 last updated on 24/Oct/20
Determine the integer which can   be written: N=xyz^(−) ^7 =zyx^(−) ^(11)
Determinetheintegerwhichcanbewritten:N=xyz7=zyx11
Commented by mathocean1 last updated on 24/Oct/20
Please can you detail sir
Pleasecanyoudetailsir
Answered by mr W last updated on 25/Oct/20
x,y,z are digits of an integer of base 7,  ⇒0≤x,y,z≤6  besides, x≥1, z≥1.    (xyz)_7 =49x+7y+z  (zyx)_(11) =121z+11y+x  ⇒49x+7y+z=121z+11y+x  ⇒48x−4y=120z  ⇒12x−y=30z  y must be a multiple of 6, say y=6Y  ⇒2x−Y=5z  Y=0 or 1  with Y=0:  2x=5z  ⇒x=5,z=2  with Y=1:  2x−1=5z  ⇒x=3, z=1    the solutions are:  x=5, Y=0 (i.e. y=0), z=2  ⇒N=(502)_7 =(205)_(11) =247  x=3, Y=1 (i.e. y=6), z=1  ⇒N=(361)_7 =(163)_(11) =190
x,y,zaredigitsofanintegerofbase7,0x,y,z6besides,x1,z1.(xyz)7=49x+7y+z(zyx)11=121z+11y+x49x+7y+z=121z+11y+x48x4y=120z12xy=30zymustbeamultipleof6,sayy=6Y2xY=5zY=0or1withY=0:2x=5zx=5,z=2withY=1:2x1=5zx=3,z=1thesolutionsare:x=5,Y=0(i.e.y=0),z=2N=(502)7=(205)11=247x=3,Y=1(i.e.y=6),z=1N=(361)7=(163)11=190
Commented by mathocean1 last updated on 25/Oct/20
Thank you sir.
Thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *