Menu Close

determine-the-interval-on-which-the-given-function-is-continuous-f-x-sin-1-x-x-0-x-x-0-




Question Number 25846 by rita1608 last updated on 15/Dec/17
determine the interval on which the  given function is continuous   f(x)= { ((sin (1/x)),(x≠0)),(x,(x=0)) :}
$${determine}\:{the}\:{interval}\:{on}\:{which}\:{the} \\ $$$${given}\:{function}\:{is}\:{continuous}\: \\ $$$${f}\left({x}\right)=\begin{cases}{\mathrm{sin}\:\frac{\mathrm{1}}{{x}}}&{{x}\neq\mathrm{0}}\\{{x}}&{{x}=\mathrm{0}}\end{cases} \\ $$
Commented by kaivan.ahmadi last updated on 15/Dec/17
since  lim_(x→0) sin(1/x) ≠f(0) ,f(x) is not continuous.  this limit is not exixst.  so the interval is R−{0}
$$\mathrm{since}\:\:\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}sin}\frac{\mathrm{1}}{\mathrm{x}}\:\neq\mathrm{f}\left(\mathrm{0}\right)\:,\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{continuous}. \\ $$$$\mathrm{this}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{not}\:\mathrm{exixst}. \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{interval}\:\mathrm{is}\:\mathbb{R}−\left\{\mathrm{0}\right\} \\ $$
Commented by prakash jain last updated on 16/Dec/17
Commented by kaivan.ahmadi last updated on 17/Dec/17
in definition we must have   ∣sin((1/x))−A∣<ε.    why     sin(1/x)≥ε  ?
$$\mathrm{in}\:\mathrm{definition}\:\mathrm{we}\:\mathrm{must}\:\mathrm{have}\: \\ $$$$\mid\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)−\mathrm{A}\mid<\epsilon. \\ $$$$ \\ $$$$\mathrm{why}\:\:\:\:\:\mathrm{sin}\frac{\mathrm{1}}{\mathrm{x}}\geqslant\epsilon\:\:? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *