Menu Close

Determine-the-maximum-value-of-1-cos-x-sin-x-cos-x-2-where-x-ranges-over-all-real-numbers-




Question Number 116374 by bemath last updated on 03/Oct/20
Determine the maximum value of   ((1+cos x)/(sin x+cos x+2)) where x ranges over all  real numbers.
Determinethemaximumvalueof1+cosxsinx+cosx+2wherexrangesoverallrealnumbers.
Answered by MJS_new last updated on 03/Oct/20
x=2arctan t  ((1+cos x)/(sin x +cos x +2))=(2/(t^2 +2t+3))  f(t)=t^2 +2t+3=0 ⇒ t=−1±(√(...)) ⇒  minimum of f(t) is at t=−1  ⇒  maximum of ((1+cos x)/(sin x +cos x +2)) is 1
x=2arctant1+cosxsinx+cosx+2=2t2+2t+3f(t)=t2+2t+3=0t=1±minimumoff(t)isatt=1maximumof1+cosxsinx+cosx+2is1
Commented by bemath last updated on 03/Oct/20
thank you prof
thankyouprof
Answered by john santu last updated on 03/Oct/20
Let f(x) = ((1+cos x)/(sin x+1+cos x+1))  ⇒f(x) = (1/(1+((1+sin x)/(1+cos x)))) .   Letting u = ((1+sin x)/(1+cos x)) , it clear that   u ≥ 0 and so f(x)≤ 1 where the   equality holds when u=0 . Thus   the maximum value of y is 1 when  sin x = −1.
Letf(x)=1+cosxsinx+1+cosx+1f(x)=11+1+sinx1+cosx.Lettingu=1+sinx1+cosx,itclearthatu0andsof(x)1wheretheequalityholdswhenu=0.Thusthemaximumvalueofyis1whensinx=1.

Leave a Reply

Your email address will not be published. Required fields are marked *