Menu Close

Determine-the-maximum-value-of-1-cos-x-sin-x-cos-x-2-where-x-ranges-over-all-real-numbers-




Question Number 116374 by bemath last updated on 03/Oct/20
Determine the maximum value of   ((1+cos x)/(sin x+cos x+2)) where x ranges over all  real numbers.
$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}+\mathrm{2}}\:\mathrm{where}\:\mathrm{x}\:\mathrm{ranges}\:\mathrm{over}\:\mathrm{all} \\ $$$$\mathrm{real}\:\mathrm{numbers}. \\ $$
Answered by MJS_new last updated on 03/Oct/20
x=2arctan t  ((1+cos x)/(sin x +cos x +2))=(2/(t^2 +2t+3))  f(t)=t^2 +2t+3=0 ⇒ t=−1±(√(...)) ⇒  minimum of f(t) is at t=−1  ⇒  maximum of ((1+cos x)/(sin x +cos x +2)) is 1
$${x}=\mathrm{2arctan}\:{t} \\ $$$$\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}\:+\mathrm{2}}=\frac{\mathrm{2}}{{t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{3}} \\ $$$${f}\left({t}\right)={t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{3}=\mathrm{0}\:\Rightarrow\:{t}=−\mathrm{1}\pm\sqrt{…}\:\Rightarrow \\ $$$$\mathrm{minimum}\:\mathrm{of}\:{f}\left({t}\right)\:\mathrm{is}\:\mathrm{at}\:{t}=−\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\mathrm{maximum}\:\mathrm{of}\:\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}\:+\mathrm{2}}\:\mathrm{is}\:\mathrm{1} \\ $$
Commented by bemath last updated on 03/Oct/20
thank you prof
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{prof} \\ $$
Answered by john santu last updated on 03/Oct/20
Let f(x) = ((1+cos x)/(sin x+1+cos x+1))  ⇒f(x) = (1/(1+((1+sin x)/(1+cos x)))) .   Letting u = ((1+sin x)/(1+cos x)) , it clear that   u ≥ 0 and so f(x)≤ 1 where the   equality holds when u=0 . Thus   the maximum value of y is 1 when  sin x = −1.
$${Let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}+\mathrm{1}+\mathrm{cos}\:{x}+\mathrm{1}} \\ $$$$\Rightarrow{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}}\:.\: \\ $$$${Letting}\:{u}\:=\:\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}\:,\:{it}\:{clear}\:{that} \\ $$$$\:{u}\:\geqslant\:\mathrm{0}\:{and}\:{so}\:{f}\left({x}\right)\leqslant\:\mathrm{1}\:{where}\:{the}\: \\ $$$${equality}\:{holds}\:{when}\:{u}=\mathrm{0}\:.\:{Thus}\: \\ $$$${the}\:{maximum}\:{value}\:{of}\:{y}\:{is}\:\mathrm{1}\:{when} \\ $$$$\mathrm{sin}\:{x}\:=\:−\mathrm{1}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *