Menu Close

Determine-the-roots-of-the-equation-x-3-64-0-in-the-polar-form-a-jb-Where-a-and-b-are-real-




Question Number 14587 by tawa tawa last updated on 02/Jun/17
Determine the roots of the equation  x^3  + 64 = 0  in the polar form  a + jb,  Where  a  and  b  are real.
Determinetherootsoftheequationx3+64=0inthepolarforma+jb,Whereaandbarereal.
Answered by mrW1 last updated on 03/Jun/17
x=r(cos θ+i sin θ)  x^3 =r^3 (cos 3ϑ+i sin 3θ)=−64=64(−1+0 i)  ⇒r^3 =64⇒r=^3 (√(64))=4  ⇒cos 3θ=−1  ⇒sin 3θ=0  ⇒3θ=(2n−1)π, n=1,2,3  ⇒θ_1 =(π/3)  ⇒θ_2 =π  ⇒θ_3 =((5π)/3)  x_1 =4(cos (π/3)+i sin (π/3))=2+2(√3) i  x_2 =4(cos π+i sin π)=−4+0 i  x_3 =4(cos ((5π)/3)+i sin ((5π)/3))=2−2(√3) i
x=r(cosθ+isinθ)x3=r3(cos3ϑ+isin3θ)=64=64(1+0i)r3=64r=364=4cos3θ=1sin3θ=03θ=(2n1)π,n=1,2,3θ1=π3θ2=πθ3=5π3x1=4(cosπ3+isinπ3)=2+23ix2=4(cosπ+isinπ)=4+0ix3=4(cos5π3+isin5π3)=223i
Commented by RasheedSoomro last updated on 04/Jun/17
This short way is new for me!
Thisshortwayisnewforme!
Commented by mrW1 last updated on 03/Jun/17
or  x^3 =−64  ((x/(−4)))^3 =1  ⇒(x/(−4))=1,ω,ω^2   ⇒x=−4,−4ω,−4ω^2
orx3=64(x4)3=1x4=1,ω,ω2x=4,4ω,4ω2
Commented by tawa tawa last updated on 04/Jun/17
God bless you sir.
Godblessyousir.
Commented by tawa tawa last updated on 04/Jun/17
Then what is w sir
Thenwhatiswsir
Commented by Tinkutara last updated on 04/Jun/17
It is not w; they are ω, cube roots of  unity.  x^3  − 1 = 0  (x − 1)(x^2  + x + 1) = 0  Roots of x^2  + x + 1 are ω and ω^2 .
Itisnotw;theyareω,cuberootsofunity.x31=0(x1)(x2+x+1)=0Rootsofx2+x+1areωandω2.
Commented by tawa tawa last updated on 04/Jun/17
God bless you sir.
Godblessyousir.
Commented by mrW1 last updated on 04/Jun/17
ω and ω^2  stand for −(1/2)±((√3)/2)i
ωandω2standfor12±32i
Commented by tawa tawa last updated on 04/Jun/17
God bless you sir.
Godblessyousir.
Commented by tawa tawa last updated on 04/Jun/17
God bless you sir.
Godblessyousir.
Commented by arnabpapu550@gmail.com last updated on 13/Jun/17
To dear tawa.  To find the qube root of 1 put x^3 =1  ∴ x^3 −1=0  or, (x−1)(x^2 +x+1)=0  ∴ (x−1)=0 ⇒x=1  or, (x^2 +x+1)=0  ∴  x=((−1±(√(1−4.1.1 )))/2)=((−1±i(√3))/2)  It is denoted by ω and ω^2 .  Where ω=((−1+i(√3))/2)  ω^2 =((−1−i(√3))/2)          [You may varify it]  Properties:  (a) ω^3 =1          ∴ ω^4 =ω^3 .ω=ω  (b) 1+ω+ω^2 =0
Todeartawa.Tofindthequberootof1putx3=1x31=0or,(x1)(x2+x+1)=0(x1)=0x=1or,(x2+x+1)=0x=1±14.1.12=1±i32Itisdenotedbyωandω2.Whereω=1+i32ω2=1i32[Youmayvarifyit]Properties:(a)ω3=1ω4=ω3.ω=ω(b)1+ω+ω2=0

Leave a Reply

Your email address will not be published. Required fields are marked *