Menu Close

Determine-the-set-of-points-M-such-as-MA-MB-2MC-6-3-AB-BC-AC-6-ABC-is-triangle-




Question Number 79131 by mathocean1 last updated on 23/Jan/20
Determine the set of points M   such as ∣∣MA^→ +MB^→ +2MC^→ ∣∣=6(√3)  AB=BC=AC=6  ABC is triangle.
DeterminethesetofpointsMsuchas∣∣MA+MB+2MC∣∣=63AB=BC=AC=6ABCistriangle.
Commented by mathocean1 last updated on 23/Jan/20
please help me sirs
pleasehelpmesirs
Commented by msup trace by abdo last updated on 23/Jan/20
let G =barycentre of the system  {(A,1),(B,1) ,(C,2)}  (e) ⇔∣∣4MG^→ ∣∣=6(√3)⇒MG=((6(√3))/4)  ⇒MG=((3(√3))/2)  ⇒M varie on cercle  C(G,((3(√3))/2))  how to trace G?  G is bsrycentre of { (I,2),(C,2)}  with I midpoint of [A,B] ⇒G  midpoint of [I,C]....
letG=barycentreofthesystem{(A,1),(B,1),(C,2)}(e)⇔∣∣4MG∣∣=63MG=634MG=332MvarieoncercleC(G,332)howtotraceG?Gisbsrycentreof{(I,2),(C,2)}withImidpointof[A,B]Gmidpointof[I,C].
Answered by ~blr237~ last updated on 23/Jan/20
let I be the middle of [AB] and J the middle of [IC]  let reduce u^→ =MA^→ +MB^→ +2MC^→   u^→ =MI^→ +IA^→ +MI^→ +IB^→ +2MC^→       =2MI^→ +2MC^→    cause  IB^→ =−IA^→       =2(MJ^→ +JI^→ +MJ^→ +JC^→ )      =4MJ^→     cause  J middle of [IC]  The search point must satisfy  ∣∣4MJ^→ ∣∣=6(√3) ⇔ MJ=((3(√3))/2)   Finaly the searched set is the circle whose center is J and radius is ((3(√3))/2)
letIbethemiddleof[AB]andJthemiddleof[IC]letreduceu=MA+MB+2MCu=MI+IA+MI+IB+2MC=2MI+2MCcauseIB=IA=2(MJ+JI+MJ+JC)=4MJcauseJmiddleof[IC]Thesearchpointmustsatisfy∣∣4MJ∣∣=63MJ=332FinalythesearchedsetisthecirclewhosecenterisJandradiusis332

Leave a Reply

Your email address will not be published. Required fields are marked *