Menu Close

Determine-the-smallest-positive-integer-x-whose-last-digit-is-6-and-if-we-erase-this-6-and-put-it-in-left-most-of-the-number-so-obtained-the-number-becomes-4x-




Question Number 18884 by Tinkutara last updated on 31/Jul/17
Determine the smallest positive integer  x, whose last digit is 6 and if we erase  this 6 and put it in left most of the  number so obtained, the number  becomes 4x.
Determinethesmallestpositiveintegerx,whoselastdigitis6andifweerasethis6andputitinleftmostofthenumbersoobtained,thenumberbecomes4x.
Answered by mrW1 last updated on 01/Aug/17
let′s say the number has n+1 digits  let x=[abcd...pqr6]=10u+6  let y=[6abcd...pqr]=6×10^n +u  y=4x  ⇒6×10^n +u=4(10u+6)  ⇒6(10^n −4)=39u  ⇒2(2^n ×5^n −2^2 )=13u  ⇒2^3 (2^(n−2) ×5^n −1)=13u  ⇒2^3 (25×10^(n−2) −1)=13u  ⇒u=((2^3 (25×10^(n−2) −1))/(13))  ⇒25×10^(n−2) −1=13k  the smallest n=5:  25×10^(5−2) −1=25000−1=24999=13×1923  ⇒min. u=2^3 ×1923=15384  ⇒min. x=153846    the further numbers are:  x=153846153846  x=153846153846153846  x=153846153846153846153846  ......
letssaythenumberhasn+1digitsletx=[abcdpqr6]=10u+6lety=[6abcdpqr]=6×10n+uy=4x6×10n+u=4(10u+6)6(10n4)=39u2(2n×5n22)=13u23(2n2×5n1)=13u23(25×10n21)=13uu=23(25×10n21)1325×10n21=13kthesmallestn=5:25×10521=250001=24999=13×1923min.u=23×1923=15384min.x=153846thefurthernumbersare:x=153846153846x=153846153846153846x=153846153846153846153846
Commented by Tinkutara last updated on 01/Aug/17
Please also explain why 25×10^(n−2)  − 1  = 13k because it should be ((13k)/8).
Pleasealsoexplainwhy25×10n21=13kbecauseitshouldbe13k8.
Commented by mrW1 last updated on 01/Aug/17
yes, u should =((2^3 (25×10^(n−2) −1))/(13)). I had just a typo.  for u=((2^3 (25×10^(n−2) −1))/(13)) and 13 is prime  25×10^(n−2) −1 must be a multiple of 13,  otherwise u woulde be no integer.  i.e. 25×10^(n−2) −1=13k with k=integer.  then u=2^3 k.  so our task is to solve the equation  25×10^(n−2) −1=13k with n,k∈N.
yes,ushould=23(25×10n21)13.Ihadjustatypo.foru=23(25×10n21)13and13isprime25×10n21mustbeamultipleof13,otherwiseuwouldebenointeger.i.e.25×10n21=13kwithk=integer.thenu=23k.soourtaskistosolvetheequation25×10n21=13kwithn,kN.
Commented by mrW1 last updated on 01/Aug/17
certainly you can solve this question  directly like this:           abcdef6                      ×4  −−−−−−−−−   =    6abcdef  ⇒f=4  ⇒e=8  ⇒d=3  ⇒c=5  ⇒b=1  ⇒a=6 ! that′s right. ⇒ our first number is 153846  just go on with these steps if you want to get the  next suitable number.
certainlyyoucansolvethisquestiondirectlylikethis:abcdef6×4=6abcdeff=4e=8d=3c=5b=1a=6!thatsright.ourfirstnumberis153846justgoonwiththesestepsifyouwanttogetthenextsuitablenumber.
Commented by Tinkutara last updated on 01/Aug/17
Thank you very much mrW1 Sir!
ThankyouverymuchmrW1Sir!
Commented by mrW1 last updated on 01/Aug/17
I tried to use an equation to solve the  question, because the question can  be generalised:  Find such numbers when we erase their last  digit and put it before the first digit,  the new number will be m times as  the original number.  m can be 2 til 9.
Itriedtouseanequationtosolvethequestion,becausethequestioncanbegeneralised:Findsuchnumberswhenweerasetheirlastdigitandputitbeforethefirstdigit,thenewnumberwillbemtimesastheoriginalnumber.mcanbe2til9.
Commented by Tinkutara last updated on 01/Aug/17
Which equation? Can you give its  derivation?
Whichequation?Canyougiveitsderivation?

Leave a Reply

Your email address will not be published. Required fields are marked *