Menu Close

Determine-the-sum-of-the-1st-nth-term-of-the-Sequence-1-4-10-22-46-Almighty-Formula-




Question Number 120363 by Lordose last updated on 30/Oct/20
  Determine the sum of the 1st nth term  of the Sequence     1,4,10,22,46,....                                          ★Almighty Formula
Determinethesumofthe1stnthtermoftheSequence1,4,10,22,46,.AlmightyFormula
Answered by floor(10²Eta[1]) last updated on 31/Oct/20
(1, 4, 10, 22, 46, ..., a_n )=(a_1 , a_2 , a_3 , ..., a_n )  a_1 =a_1   a_2 =a_1 +3  a_3 =a_2 +6  a_4 =a_3 +12  ... (sum all together)  S_n =a_1 +S_(n−1) +(3+6+12+...+b_(n−1) )  S_n =a_1 +S_n −a_n +(3+6+...+b_(n−1) )  a_n =a_1 +(3+6+12+...+b_(n−1) )   a_n =1+(3+6+12+...+b_(n−1) ) [geometric progression]  a_n =1+3(2^(n−1) −1)  a_n =3.2^(n−1) −2  S_n =Σ_(k=1) ^n (3.2^(k−1) −2)=3(Σ_(k=1) ^n 2^(k−1) )−2n  ⇒S_n =3.2^n −3−2n
(1,4,10,22,46,,an)=(a1,a2,a3,,an)a1=a1a2=a1+3a3=a2+6a4=a3+12(sumalltogether)Sn=a1+Sn1+(3+6+12++bn1)Sn=a1+Snan+(3+6++bn1)an=a1+(3+6+12++bn1)an=1+(3+6+12++bn1)[geometricprogression]an=1+3(2n11)an=3.2n12Sn=nk=1(3.2k12)=3(nk=12k1)2nSn=3.2n32n

Leave a Reply

Your email address will not be published. Required fields are marked *