Menu Close

Determine-the-value-of-x-y-if-x-3-y-3-1-x-y-x-1-y-1-2-




Question Number 98104 by bemath last updated on 11/Jun/20
Determine the value of x+y   if  { ((x^3 +y^3 =1)),(((x+y)(x+1)(y+1)=2)) :}
Determinethevalueofx+yif{x3+y3=1(x+y)(x+1)(y+1)=2
Commented by bemath last updated on 12/Jun/20
thank you all
thankyouall
Answered by mr W last updated on 11/Jun/20
u=x+y  v=xy  x^3 +y^3 =(x+y)^3 −3xy(x+y)=1  ⇒u^3 −3uv=1  ⇒v=((u^3 −1)/(3u))  (x+y)(xy+x+y+1)=2  ⇒u(u+v+1)=2  ⇒u(u+((u^3 −1)/(3u))+1)=2  ⇒u^3 +3u^2 +3u−1=6  ⇒u^3 +3u^2 +3u+1=8  ⇒(u+1)^3 =8=2^3   ⇒u+1=2, 2ω, 2ω^2   ⇒u=x+y=1 (real)  ⇒u=x+y=2ω−1=−2+i(√3)  ⇒u=x+y=2ω^2 −1=−2−i(√3)
u=x+yv=xyx3+y3=(x+y)33xy(x+y)=1u33uv=1v=u313u(x+y)(xy+x+y+1)=2u(u+v+1)=2u(u+u313u+1)=2u3+3u2+3u1=6u3+3u2+3u+1=8(u+1)3=8=23u+1=2,2ω,2ω2u=x+y=1(real)u=x+y=2ω1=2+i3u=x+y=2ω21=2i3
Commented by Lekhraj last updated on 11/Jun/20
(u+1)^3 =8
(u+1)3=8
Commented by mr W last updated on 11/Jun/20
yes
yes
Answered by Rasheed.Sindhi last updated on 11/Jun/20
if  { ((x^3 +y^3 =1.......................(i))),(((x+y)(x+1)(y+1)=2.....(ii))) :}  (ii)⇒        xy=(2/(x+y))−(x+y)−1.....(iii)  (i)⇒  (x+y)^3 −3xy(x+y)=1......(iv)  (iii)&(iv)⇒  (x+y)^3 −3((2/(x+y))−(x+y)−1)(x+y)=1  (x+y)^3 −3(2−(x+y)^2 −(x+y))=1  (x+y)^3 −6+3(x+y)^2 +3(x+y))=1  (x+y)^3 +3(x+y)^2 +3(x+y)−7=0    t^3 +3t^2 +3t−7=0  −7=(±1)(∓7)  t=1 satisfy the equation  x+y=1  ∴t−1 is factor of  t^3 +3t^2 +3t−7       (((1)),1,3,3,(−7)),(,,1,4,(    7)),(,1,4,7,(     0)) )            t^2 +4t+7=0           t=((−4±(√(16−28)))/2)           t=((−4±2i(√3))/2)         x+y=((−4±2i(√3))/2)=−2±i(√3)         x+y=1, −2±i(√3)
if{x3+y3=1..(i)(x+y)(x+1)(y+1)=2..(ii)(ii)xy=2x+y(x+y)1..(iii)(i)(x+y)33xy(x+y)=1(iv)(iii)&(iv)(x+y)33(2x+y(x+y)1)(x+y)=1(x+y)33(2(x+y)2(x+y))=1(x+y)36+3(x+y)2+3(x+y))=1(x+y)3+3(x+y)2+3(x+y)7=0t3+3t2+3t7=07=(±1)(7)t=1satisfytheequationx+y=1t1isfactoroft3+3t2+3t7(1)13371471470)t2+4t+7=0t=4±16282t=4±2i32x+y=4±2i32=2±i3x+y=1,2±i3
Answered by 1549442205 last updated on 11/Jun/20
(2)⇔(x+y)[xy+(x+y)+1]=2  (1)⇔(x+y)^3 −3xy(x+y)=1  Put x+y=u,xy=v we have { ((u^3 −3uv=1(3))),((u(u+v+1)=2(4))) :}  From (4) we ger uv=2−u^2 −u.Replace into (3) we get  u^3 −3(2−u^2 −u)=1⇔u^3 +3u^2 +3u−7=9  ⇔(u−1)(u^2 +4u+7)=0⇔u−1=0(as u^2 +4u+7=(u+2)^2 +3>0)  ,so u=1,replace into (4) we get v=0.We have   { ((x+y=1)),((xy=0)) :}⇔(x;y)∈{(0;1);(1;0)}  Thus,our system of equations has two  soluions:(x;y)∈{(0;1);(1;0)}
(2)(x+y)[xy+(x+y)+1]=2(1)(x+y)33xy(x+y)=1Putx+y=u,xy=vwehave{u33uv=1(3)u(u+v+1)=2(4)From(4)wegeruv=2u2u.Replaceinto(3)wegetu33(2u2u)=1u3+3u2+3u7=9(u1)(u2+4u+7)=0u1=0(asu2+4u+7=(u+2)2+3>0),sou=1,replaceinto(4)wegetv=0.Wehave{x+y=1xy=0(x;y){(0;1);(1;0)}Thus,oursystemofequationshastwosoluions:(x;y){(0;1);(1;0)}
Answered by MJS last updated on 11/Jun/20
x=u−v∧y=u+v   { ((2u^3 +6uv^2 −1=0)),((2(u^3 +2u^2 +u−1)−2uv^2 =0)) :}  ⇒  v^2 =((1−2u^3 )/(6u))=((u^3 +2u^2 +u−1)/u)  ⇒  u^3 +(3/2)u^2 +(3/4)u−(7/8)=0  u=t−(1/2)  t^3 −1=0  t=1∨t=−(1/2)±((√3)/2)i  u=(1/2)∨u=−1±((√3)/2)i  x=u−v∧y=u+v ⇒ x+y=2u  answer is 1∨−2±(√3)i
x=uvy=u+v{2u3+6uv21=02(u3+2u2+u1)2uv2=0v2=12u36u=u3+2u2+u1uu3+32u2+34u78=0u=t12t31=0t=1t=12±32iu=12u=1±32ix=uvy=u+vx+y=2uansweris12±3i
Answered by maths mind last updated on 11/Jun/20
(x+y)(x+1)(y+1)  =(x+y)(xy+x+y+1)  ={xy(x+y)+(x+y)^2 +(x+y)=2}×3..E  x^3 +y^3 =1..G  E+G=(x+y)^3 +3(x+y)^2 +3(x+y)=7  ⇔(x+y)^3 +3(x+y)^2 +3(x+y)+1=8  ⇔(1+x+y)^3 =8⇒1+x+y=2e^(i((2kπ)/3))   ⇒x+y=2e^(i((kπ)/3)) −1,k∈{0,1,2}
(x+y)(x+1)(y+1)=(x+y)(xy+x+y+1)={xy(x+y)+(x+y)2+(x+y)=2}×3..Ex3+y3=1..GE+G=(x+y)3+3(x+y)2+3(x+y)=7(x+y)3+3(x+y)2+3(x+y)+1=8(1+x+y)3=81+x+y=2ei2kπ3x+y=2eikπ31,k{0,1,2}

Leave a Reply

Your email address will not be published. Required fields are marked *